Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → France → 2019 → Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

Université Toulouse 3 Paul Sabatier (2019)

Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

Amazirh, Abdelhakim

Titre : Monitoring crops water needs at high spatio-temporal resolution by synergy of optical/thermal and radar observations

Suivi des besoins en eau des cultures à haute résolution spatio-temporelle par synergie des observations optiques/thermiques et radar

La méthode utilisée est calibrée et validée sur deux parcelles de blé situées dans la même zone près de Marrakech au Maroc

Auteur : Amazirh, Abdelhakim

Etablissement de soutenance : Université Toulouse 3 Paul Sabatier

Grade : Doctorat : Surfaces et interfaces continentales, hydrologie : Toulouse 3 : 2019

Résumé
L’optimisation de la gestion de l’eau en agriculture est essentielle dans les zones semi-arides afin de préserver les ressources en eau qui sont déjà faibles et erratiques dues à des actions humaines et au changement climatique. Cette thèse vise à utiliser la synergie des observations de télédétection multispectrales (données radar, optiques et thermiques) pour un suivi à haute résolution spatio-temporelle des besoins en eau des cultures. Dans ce contexte, différentes approches utilisant divers capteurs (Landsat-7/8, Sentinel-1 et MODIS) ont été developpées pour apporter une information sur l’humidité du sol (SM) et le stress hydrique des cultures à une échelle spatio-temporelle pertinente pour la gestion de l’irrigation. Ce travail va parfaitement dans le sens des objectifs du projet REC "Root zone soil moisture Estimates at the daily and agricultural parcel scales for Crop irrigation management and water use impact : a multi-sensor remote sensing approach" (http://rec.isardsat.com/) qui visent à estimer l’humidité du sol dans la zone racinaire (RZSM) afin d’optimiser la gestion de l’eau d’irrigation. Des approches innovantes et prometteuses sont mises en place pour estimer l’évapotranspiration (ET), RZSM, la température de surface du sol (LST) et le stress hydrique de la végétation à travers des indices de SM dérivés des observations multispectrales à haute résolution spatio-temporelle. Les méthodologies proposées reposent sur des méthodes basées sur l’imagerie, la modélisation du transfert radiatif et la modélisation du bilan hydrique et d’énergie et sont appliquées dans une région à climat semi-aride (centre du Maroc). Dans le cadre de ma thèse, trois axes ont été explorés. Dans le premier axe, un indice de RZSM dérivé de LST-Landsat est utilisé pour estimer l’ET sur des parcelles de blé et des sols nus. L’estimation par modélisation de ET a été explorée en utilisant l’équation de Penman-monteith modifiée obtenue en introduisant une relation empirique simple entre la résistance de surface (rc) et l’indice de RZSM. Ce dernier est estimé à partir de la température de surface (LST) dérivée de Landsat, combinée avec les températures extrêmes (en conditions humides et sèches) simulée par un modèle de bilan d’énergie de surface piloté par le forçage météorologique et la fraction de couverture végétale dérivée de Landsat. La méthode utilisée est calibrée et validée sur deux parcelles de blé situées dans la même zone près de Marrakech au Maroc. Dans l’axe suivant, une méthode permettant de récupérer la SM de la surface (0-5 cm) à une résolution spatiale et temporelle élevée est développée à partir d’une synergie entre données radar (Sentinel-1) et thermique (Landsat) et en utilisant un modèle de bilan d’énergie du sol. L’approche développée a été validée sur des parcelles agricoles en sol nu et elle donne une estimation précise de la SM avec une différence quadratique moyenne en comparant à la SM in situ, égale à 0,03 m3 m-3. Dans le dernier axe, une nouvelle méthode est développée pour désagréger la MODIS LST de 1 km à 100 m de résolution en intégrant le SM proche de la surface dérivée des données radar Sentinel-1 et l’indice de végétation optique dérivé des observations Landsat. Le nouvel algorithme, qui inclut la rétrodiffusion S-1 en tant qu’entrée dans la désagrégation, produit des résultats plus stables et robustes au cours de l’année sélectionnée. Dont, 3,35 °C était le RMSE le plus bas et 0,75 le coefficient de corrélation le plus élevé évalués en utilisant le nouvel algorithme.

Présentation (SUDOC)

Version intégrale

Page publiée le 26 octobre 2020