Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Master → Afrique du Sud → 2018 → The physiology of germination and dormancy in seeds of gynandropsi gynandra L. Briq syn Cleome gynandra L. (Cleomaceae).

University of KwaZulu-Natal (2018)

The physiology of germination and dormancy in seeds of gynandropsi gynandra L. Briq syn Cleome gynandra L. (Cleomaceae).

Blalogoe, Seho Jelila.

Titre : The physiology of germination and dormancy in seeds of gynandropsi gynandra L. Briq syn Cleome gynandra L. (Cleomaceae).

Auteur : Blalogoe, Seho Jelila.

Université de soutenance : University of KwaZulu-Natal

Grade : Master of Science degree in Plant Breeding 2018

Résumé partiel
The “spider plant” Gynandropsis gynandra L. Briq,” is an important traditional leafy vegetable in many parts of Africa. The species is considered underutilized and has been mainly neglected by research systems. Yields are generally low and this has been attributed to a number of factors including low and non-uniform seed germination. This study sought to gain a deeper understanding of factors influencing germination and dormancy in spider plant seeds. The specific objectives were to, (i) describe and document the phenotypic characteristics and mineral composition of seeds of 29 G. gynandra accessions from diverse regions, (ii) determine the pattern of seed germination and dormancy development in seeds of different spider plant accessions and their crosses and (iii) assess the storage potential of spider plant seeds using artificial aging. To achieve these objectives, accessions originating from West Africa, East Africa and Asia were used. In the first experiment, seeds of the accessions from the three regions were subjected to scanning electron microscopy to study seed structure and mineral composition. In the second experiment, seeds from different accessions were planted in pots in a tunnel and data recorded at bi-weekly intervals during development until maturity on the following variables : seed fresh and dry mass, seed moisture content, germination capacity, mean germination time (MGT) and electrical conductivity (EC). In the third experiment, seeds that had been stored for four months and freshly harvested were subjected to the accelerated aging to test for storage potential. The same variables that were in the second experiment were measured in the third experiment in addition to tetrazolium test (TZ). Data analysis was done using R software version 3.5.1. Eight mineral elements were identified in the seeds of spider plant, and the internal and external structure of the seed was revealed.

Présentation

Version intégrale (2,11 Mb)

Page publiée le 21 janvier 2021