Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → 2020 → From changes in the Earth’s orbit to African climate variability

Universität Potsdam (2020)

From changes in the Earth’s orbit to African climate variability

Düsing Walter

Titre : From changes in the Earth’s orbit to African climate variability

Auteur : Düsing Walter

Université de soutenance : Universität Potsdam

Grade : Doctor rerum naturalium (Dr. rer. nat.) 2020

Résumé partiel
We developed an orbital tuned age model for the composite Chew Bahir sediment core, obtained from the Chew Bahir basin (CHB), southern Ethiopia. To account for the effects of sedimentation rate changes on the spectral expression of the orbital cycles we developed a new method : the Multi-band Wavelet Age modeling technique (MUBAWA). By using a Continuous Wavelet Transformation, we were able to track frequency shifts that resulted from changing sedimentation rates and thus calculated tuned age model encompassing the last 620 kyrs. The results show a good agreement with the directly dated age model that is available from the dating of volcanic ashes. Then we used the XRF data from CHB and developed a new and robust humid-arid index of east African climate during the last 620 kyrs. To disentangle the relationship of the selected elements we performed a principal component analysis (PCA). In a following step we applied a continuous wavelet transformation on the PC1, using the directly dated age model. The resulting wavelet power spectrum, unlike a normal power spectrum, displays the occurrence of cycles/frequencies in time. The results highlight that the precession cycles are most dominantly expressed under the 400 kyrs eccentricity maximum whereas weakly expressed during eccentricity minimum. This suggests that insolation is a key driver of the climatic variability observed at CHB throughout the last 620 kyrs. In addition, the prevalence of half-precession and obliquity signals was documented. The latter is attributed to the inter-tropical insolation gradient and not interpreted as an imprint of high latitudes forcing on climatic changes in the tropics. In addition, a windowed analysis of variability was used to detect changes in variance over time and showed that strong climate variability occurred especially along the transition from a dominant insolation-controlled humid climate background state towards a predominantly dry and less-insolation controlled climate. The last chapter dealt with non-linear aspects of climate changes represented by the sediments of the CHB. We use recurrence quantification analysis to detect non-linear changes within the potassium concentration of Chew Bahir sediment cores during the last 620 kyrs. The concentration of potassium in the sediments of the lake is subject to geochemical processes related to the evaporation rate of the lake water at the time of deposition.


Version intégrale (14,3 Mb)

Page publiée le 24 mai 2021