Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Suisse → Remote sensing environmental change in southern African savannahs : a case study of Namibia

University of Basel (2017)

Remote sensing environmental change in southern African savannahs : a case study of Namibia

Wingate, Vladimir R..

Titre : Remote sensing environmental change in southern African savannahs : a case study of Namibia

Auteur : Wingate, Vladimir R..

Université de soutenance : University of Basel

Grade : Doctor of Philosophy (PhD) 2017

Résumé partiel
Savannah biomes cover a fifth of Earth’s surface, harbour many of the world’s most iconic species and most of its livestock and rangeland, while sustaining the livelihoods of an important proportion of its human population. They provide essential ecosystem services and functions, ranging from forest, grazing and water resources, to global climate regulation and carbon sequestration. However, savannahs are highly sensitive to human activities and climate change. Across sub-Saharan Africa, climatic shifts, destructive wars and increasing anthropogenic disturbances in the form of agricultural intensification and urbanization, have resulted in widespread land degradation and loss of ecosystem services. Yet, these threatened ecosystems are some of the least studied or protected, and hence should be given high conservation priority. Importantly, the scale of land degradation has not been fully explored, thereby comprising an important knowledge gap in our understanding of ecosystem services and processes, and effectively impeding conservation and management of these biodiversity hotspots. The primary drivers of land degradation include deforestation, triggered by the increasing need for urban and arable land, and concurrently, shrub encroachment, a process in which the herbaceous layer, a defining characteristic of savannahs, is replaced with hardy shrubs. These processes have significant repercussions on ecosystem service provision, both locally and globally, although the extents, drivers and impacts of either remain poorly quantified and understood. Additionally, regional aridification anticipated under climate change, will lead to important shifts in vegetation composition, amplified warming and reduced carbon sequestration. Together with a growing human population, these processes are expected to compound the risk of land degradation, thus further impacting key ecosystem services. Namibia is undergoing significant environmental and socio-economic changes. The most pervasive change processes affecting its savannahs are deforestation, degradation and shrub encroachment. Yet, the extent and drivers of such change processes are not comprehensively quantified, nor are the implications for rural livelihoods, sustainable land management, the carbon cycle, climate and conservation fully explored. This is partly due to the complexities of mapping vegetation changes with satellite data in savannahs. They are naturally spatially and temporally variable owing to erratic rainfall, divergent plant functional type phenologies and extensive anthropogenic impacts such as fire and grazing. Accordingly, this thesis aims to (i) quantify distinct vegetation change processes across Namibia, and (ii) develop methodologies to overcome limitations inherent in savannah mapping. Multi-sensor satellite data spanning a range of spatial, temporal and spectral resolutions are integrated with field datasets to achieve these aims, which are addressed in four journal articles.


Version intégrale (13 Mb)

Page publiée le 27 mai 2021