Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Afrique du Sud → 2009 → Combining ability and heterosis for stem sugar traits and grain yield components in dual-purpose sorghum (Sorghum bicolor L. Moench) germplasm

University of KwaZulu-Natal, Pietermaritzburg (2009)

Combining ability and heterosis for stem sugar traits and grain yield components in dual-purpose sorghum (Sorghum bicolor L. Moench) germplasm

Makanda, Itai

Titre : Combining ability and heterosis for stem sugar traits and grain yield components in dual-purpose sorghum (Sorghum bicolor L. Moench) germplasm

Auteur : Makanda, Itai

Université de soutenance : University of KwaZulu-Natal, Pietermaritzburg

Grade : Doctor of Philosophy Ph.D. 2009.

Résumé
Sorghum is the fifth most important cereal crop in the world and ranks third in Africa, and it is potentially the number one cereal for the semi-arid environments in sub-Saharan Africa. Sorghum varieties have been developed specifically for grain, fodder or stem sugar but not for dual-purpose combining grain and stem sugar. Such varieties could be beneficial to the resource-poor farmers by providing grain for food and sugar rich stalks that can be sold for bioethanol production. However, there are no suitable dual-purpose cultivars on the market. There is also limited information about the combining ability, gene action and genetic effects and relationships between stem sugar and grain yield which is required in devising appropriate strategies for developing dual-purpose sorghum varieties. Furthermore, there is also lack of information about the perceptions of resource-poor, small-scale farmers and other important stakeholders on the potential of dual-purpose sorghum production and the value chain. Therefore, the objectives of this study were to : (i) investigate the awareness of the farmers, industry and other stakeholders on the dual-purpose sorghum varietal development and its feasibility, (ii) screen germplasm for use as source materials useful for grain yield and stem sugar traits, (iii) investigate the inheritance and heterosis levels attainable in grain yield components and stem sugar traits in dual-purpose sorghums, (iv) determine the relationships between stem sugar traits and grain yield components in dual-purpose sorghums, and (v) investigate the fertility restoration capacities of selected male-fertile lines used as male parents through the evaluating seed set in experimental dual-purpose hybrids. Two surveys were conducted to establish stakeholders’ level of awareness and perceptions on the potential and feasibility of developing and utilising dual-purpose sorghums in Southern Africa. One survey was carried out in the semi-arid tropical lowlands in Zimbabwe under the conditions of small-scale and resource-poor farmers while the other, which targeted sugar industries, plant breeders, engineers, political leaders, economists and extension workers, was conducted in South Africa and Zimbabwe. Data were analysed using SPSS computer package. Results showed that both farmers and the non-farmer stakeholders were in agreement on the view that dual-purpose sorghum would be a viable enterprise that could alleviate poverty, enhance food security, create rural employment and boost rural development in southern African countries. Farmers were willing to adopt the cultivars if they were made available. The stakeholders also suggested mechanisms to overcome the infrastructural, economic and technical challenges associated with the technology. Screening of regional and international germplasm collection held at the University of KwaZulu- Natal in South Africa revealed high genetic variability for grain yield, stem brix and stem biomass yield that can be exploited in dual-purpose sorghum cultivar development. Ten lines were selected for inclusion as parents in the dual-purpose sorghum breeding programme. The selections were crossed to eight cytoplasmic male-sterile lines originating from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in accordance with a North Carolina Design II mating scheme. The 18 parents, together with the 80 experimental hybrids generated and two check varieties were evaluated for grain yield and stem sugar traits in six tropical low- and mid-altitude environments in Mozambique, South Africa and Zimbabwe. Stem sugar concentration and stem biomass were measured at the hard dough stage of each entry due to maturity differences between the genotypes. Grain yield was measured and adjusted to 12.5% moisture content. Data were analysed in GenStat computer package following a fixed effects model. Both additive and non-additive gene effects were important in controlling stem brix, stem biomass, grain yield and the associated traits in dual-purpose sorghum. This showed that breeding progress can be achieved through hybridisation and selection. Cultivars showing high stability, and high standard and better-parent heterosis for the three traits were identified implying that breeding for general adaptation was an option and that productivity could be enhanced by breeding hybrid cultivars. The relationships between traits were estimated using correlation and path-coefficients analysis. Grain yield was found to be negatively and significantly associated with stem brix but was positively and significantly associated with stem biomass. This implied that breeding for high stem brix might compromise grain yield but selection for high stem biomass improved grain yield. Stem biomass and stem brix were not significantly correlated. The general negative relationship between grain and stem brix was attributed to the predominance of entries with contrasting performances for the two traits. However, the relationship between grain yield and stem brix of the top 20 performing entries showed a non-significant relationship between stem brix and grain yield suggesting that the traits were independent of each other. This finding was confirmed by the presence of crosses that combined high performance for both stem brix and grain yield as well as stem biomass among the hybrids. The relationships between stem brix and stem biomass for the top 20 performers remained non-significant while that between stem biomass and grain yield became stronger, positive and significant. Direct selection for stem brix and grain yield was shown to be more important than indirect selection, while selection for stem biomass improves grain yield but had no effect on stem brix. Therefore, it is possible to breed dualpurpose sorghum cultivars and the identification of genotypes combining the desirable traits is prudent in addition to general relationships information. The study on fertility restoration capacities as evaluated through hybrid seed set showed that fertility restoration was under the control of genes with both additive and non-additive action. Since restoration is conferred by a single dominant gene (Rf1), this could have arisen from the action of the modifier genes that have been previously reported to influence it. This showed that fertility restoration can be improved through breeding. Hybrid combinations showing complete seed set and high performance for grain, stem brix and stem biomass were identified and are potential dual-purpose sorghum cultivars. Overall, the study showed that development of dualpurpose sorghum cultivars would be feasible and genotypes identified as potential cultivars in this study will be forwarded for further testing across many sites and seasons in the target environments

Présentation

Version intégrale

Page publiée le 4 septembre 2010, mise à jour le 25 juin 2017