Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → 2020 → Gene flow, population structure and genetic specification of giraffe have implications for their conservation

Johann Wolfgang Goethe-Universität (2020)

Gene flow, population structure and genetic specification of giraffe have implications for their conservation

Winter Sven

Titre : Gene flow, population structure and genetic specification of giraffe have implications for their conservation

Auteur : Winter Sven

Université de soutenance : Johann Wolfgang Goethe-Universität

Grade : Doktorgrades der Naturwissenschaften 2020

Résumé partiel
The genus Giraffa likely evolved around seven million years ago in Indo-Asia and spread over the Arabian-African land bridge into Eastern Africa. The oldest fossil of the African lineage was found in Kenya and dated to 7-5.4 Mya. Beside modern giraffe, four additional African species have likely existed (G. gracilis, G. pygmaea, G. stillei, and G. jumae). Based on their morphological similarities, G. gracilis is often considered to be the closest relative of the modern giraffe. Nevertheless, the phylogeny within the genus Giraffa is largely unresolved. Modern giraffe (Giraffa sp.) have been neglected by the scientific community for a long time and still very little is known about their biology. Traditionally, present-day giraffe have been considered a single species (G. camelopardalis) which is divided into six to eleven subspecies, with nine subspecies being the most accepted classification. This classification was based on morphological differences and geographic ranges. However, recent genetic analyses found hidden diversity within Giraffa and proposed four genetically distinct giraffe species (G. camelopardalis, G. reticulata, G. tippelskirchi, G. giraffa) with presumably little gene flow among them. Gene flow on a population level is the exchange of genetic information among populations facilitated by the migration of individuals between populations. Additionally, it is an important criterion to delineate species, because many species concepts, especially the Biological Species Concept, rely on the concept of reproductive isolation. Yet, new genetic methods are identifying an increasing number of species that show signs of introgressive hybridization or gene flow among them. Therefore, strict reproductive isolation cannot always be applied to delineate species, especially in young, probably still diverging, species such as giraffe. Therefore, giraffe are ideal study organisms to investigate the level of gene flow in recently diverged species with adjacent or potentially overlapping ranges. Furthermore, their recent classification as “Vulnerable” by the IUCN and their unreliable distribution maps require the genetic evaluation of their population structure, distribution and conservation status. In Publication 1 (Winter et al. (2018a), Ecological Genetics and Genomics, 7–8, 1–5), I studied the distribution and matrilineal population structure of Angolan giraffe (G. giraffa angolensis) using sequences from the cytochrome b gene (1,140 bp) and the mitochondrial control region for individuals from across their known range and beyond, and additionally including individuals from all known giraffe species and subspecies. The reconstruction of a phylogenetic tree and a mitochondrial haplotype network allowed to identify the most easterly known natural population of Angolan giraffe, a population that was previously assigned to their sister-subspecies South African giraffe (G. giraffa giraffa), indicating the limit of classification by morphology and geography. Furthermore, the analyses show that Namibia’s iconic desert-dwelling giraffe population is genetically distinct, even from the nearest population at Etosha National Park, suggesting very limited, if any, natural exchange of matrilines. Yet, no geographic barriers are known for this region that would prevent genetic exchange. Therefore, the two populations are likely on different evolutionary trajectories. Limited individuals with an Etosha haplotype further suggest that translocation of Etosha giraffe into the desert population had only a minor impact on the local population. Two separate haplogroups within Etosha National Park suggest an “out of Etosha” radiation of Angolan giraffe to the East followed by a later back-migration.


Version intégrale (42 Mb)

Page publiée le 23 novembre 2021