Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Master → Afrique du Sud → 2020 → Agronomic evaluation of chickpea (Cicer arietinum L.) genotypes in contrasting agro-ecological regions of Limpopo and Mpumalanga Provinces

University of Venda (2020)

Agronomic evaluation of chickpea (Cicer arietinum L.) genotypes in contrasting agro-ecological regions of Limpopo and Mpumalanga Provinces

Shilenge, Siphiwe Kim

Titre : Agronomic evaluation of chickpea (Cicer arietinum L.) genotypes in contrasting agro-ecological regions of Limpopo and Mpumalanga Provinces

Auteur : Shilenge, Siphiwe Kim

Université de soutenance : University of Venda

Grade : Master of Science in Agriculture (Plant Production) 2020

Résumé partiel
Chickpea (Cicer arietinum L.) is an important grain legume in the world, ranking second after soybean (Glycine max L.). It accounts for a substantial proportion of human dietary nitrogen intake and plays a crucial role in food security in developing countries. Chickpea can grow in areas with low rainfall and poor soils, and thus may be an important food security crop for smallholder resource-poor farmers in the semi-arid tropics such as the dry environments of the Limpopo and Mpumalanga Provinces of South Africa. Preliminary studies showed the huge potential of chickpea production in these environments. However, no suitable genotypes have been identified and recommended for different agro-ecological zones of Limpopo and Mpumalanga Provinces. Therefore, the objective of this study was to evaluate the performance, and hence, identify the genotypes that are adapted/suitable to the contrasting agro-ecological conditions of Limpopo and Mpumalanga Provinces for production. Field experiments were conducted in the winter cropping seasons of 2016 and 2017 at Thohoyandou (University of Venda experimental station), Syferkuil (University of Limpopo experimental station) and Nelspruit (University of Mpumalanga experimental station). Ten desi chickpea genotypes were sown in a completely randomized block design replicated three times on 10 May 2016 and 10 April 2017 (Thohoyandou), 13 May 2016 and 11 April 2017 (Syferkuil) and 03 May 2016 and 24 May 2017 (Nelspruit). Plant growth characteristics were assessed by determining plant height, crop phenology, number of primary and secondary branches, and canopy cover. Yield and yield components were assessed at harvest after physiological maturity. Carbon dioxide exchange rates (CER) was determined at different growth stages using the InfraRed Gas Analyzer (IRGA). Chlorophyll content (CC) and intercepted radiation were determined weekly using the chlorophyll content meter (CCM-200 PLUS, Opti-Science, Tyngsboro, Massachusetts), and the AccuPAR, LP-80 ceptometer (Deacon Devices Ltd., Pullman, USA), respectively. Genotypes did not vary in CC at Thohoyandou in all seasons, but CC increased with stages of growth. Genotypes varied in the proportion of intercepted radiation (IR) at all measurement dates in Thohoyandou during the 2016 and 2017 growing seasons. The proportion of IR increased with growth stage, reached a peak and declined with plant age. Genotype affected photosynthesis and intercellular CO2 concentration (Ci) but did not have any significant effect on stomatal conductance (gs), transpiration (T) and Leaf Vapour Pressure Deficit (VPDL) during the 2016 season in Thohoyandou.

Présentation

Version intégrale (1 Mb)

Page publiée le 18 juin 2022