Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Inde → 2007 → Hydrologic Impacts Of Climate Change : Uncertainty Modeling

Indian Institute of Science (2007)

Hydrologic Impacts Of Climate Change : Uncertainty Modeling

Ghosh, Subimal

Titre : Hydrologic Impacts Of Climate Change : Uncertainty Modeling

Auteur : Ghosh, Subimal

Etablissement de soutenance : Indian Institute of Science

Grade : PhD 2007

Résumé partiel
General Circulation Models (GCMs) are tools designed to simulate time series of climate variables globally, accounting for effects of greenhouse gases in the atmosphere. They attempt to represent the physical processes in the atmosphere, ocean, cryosphere and land surface. They are currently the most credible tools available for simulating the response of the global climate system to increasing greenhouse gas concentrations, and to provide estimates of climate variables (e.g. air temperature, precipitation, wind speed, pressure etc.) on a global scale. GCMs demonstrate a significant skill at the continental and hemispheric spatial scales and incorporate a large proportion of the complexity of the global system ; they are, however, inherently unable to represent local subgrid-scale features and dynamics. The spatial scale on which a GCM can operate (e.g., 3.75° longitude x 3.75° latitude for Coupled Global Climate Model, CGCM2) is very coarse compared to that of a hydrologic process (e.g., precipitation in a region, streamflow in a river etc.) of interest in the climate change impact assessment studies. Moreover, accuracy of GCMs, in general, decreases from climate related variables, such as wind, temperature, humidity and air pressure to hydrologic variables such as precipitation, evapotranspiration, runoff and soil moisture, which are also simulated by GCMs. These limitations of the GCMs restrict the direct use of their output in hydrology. This thesis deals with developing statistical downscaling models to assess climate change impacts and methodologies to address GCM and scenario uncertainties in assessing climate change impacts on hydrology. Downscaling, in the context of hydrology, is a method to project the hydrologic variables (e.g., rainfall and streamflow) at a smaller scale based on large scale climatological variables (e.g., mean sea level pressure) simulated by a GCM. A statistical downscaling model is first developed in the thesis to predict the rainfall over Orissa meteorological subdivision from GCM output of large scale Mean Sea Level Pressure (MSLP). Gridded monthly MSLP data for the period 1948 to 2002, are obtained from the National Center for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis project for a region spanning 150 N -250 N in latitude and 800 E -900 E in longitude that encapsulates the study region. The downscaling model comprises of Principal Component Analysis (PCA), Fuzzy Clustering and Linear Regression. PCA is carried out to reduce the dimensionality of the larger scale MSLP and also to convert the correlated variables to uncorrelated variables. Fuzzy clustering is performed to derive the membership of the principal components in each of the clusters and the memberships obtained are used in regression to statistically relate MSLP and rainfall. The statistical relationship thus obtained is used to predict the rainfall from GCM output. The rainfall predicted with the GCM developed by CCSR/NIES with B2 scenario presents a decreasing trend for non-monsoon period, for the case study

Mots clé : Climate Change Microclimatology General Circulation Models (GCMs) Climate - Circulation Model Climate Change - Statistical Methods Climate Impact Assessment Climate Model Atmospheric Circulation Model Modeling GCM Fuzzy Clustering Streamflow Prediction Kernel Functions Vector Machine

Présentation (ETD IISC)

Page publiée le 8 octobre 2010, mise à jour le 16 février 2021