Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Inde → 2006 → Extended Range Predictability And Prediction Of Indian Summer Monsoon

Indian Institute of Science (2006)

Extended Range Predictability And Prediction Of Indian Summer Monsoon

Xavier, Prince K

Titre : Extended Range Predictability And Prediction Of Indian Summer Monsoon

Auteur : Xavier, Prince K

Etablissement de soutenance : Indian Institute of Science

Grade : PhD 2006

Résumé partiel
Indian summer monsoon (ISM) is an important component of the tropical climate system, known for its regular seasonality and abundance of rainfall over the country. The droughts and floods associated with the year-to-year variation of the average seasonal rainfall have devastating effect on people, agriculture and economy of this region. The demand for prediction of seasonal monsoon rainfall, therefore, is overwhelming. A number of attempts to predict the seasonal mean monsoon have been made over a century, but neither dynamical nor empirical models provide skillful forecasts of the extremes of the monsoon such as the unprecedented drought of 2002. This study investigates the problems and prospects of extended range monsoon prediction. An evaluation of the potential predictability of the ISM with the aid of an ensemble of Atmospheric General Circulation Model (AGCM) simulations indicates that the interannual variability (IAV) of ISM is contributed equally by the slow boundary forcing (‘externally’ forced variability) and the inherent climate noise (‘internal’ variability) in the atmosphere. Success in predicting the ISM would depend on our ability to extract the predictable signal from a background of noise of comparable amplitude. This would be possible only if the ‘external’ variability is separable from the ‘internal’ variability. A serious effort has been made to understand and isolate the sea surface temperature (SST) forced component of ISM variability that is not strongly influenced by the ‘internal’ variability. In addition, we have investigated to unravel the mechanism of generation of ‘internal’ IAV so that the method of isolating it from forced variability may be found. Since the primary forcing mechanism of the monsoon is the large-scale meridional gradient of deep tropospheric heat sources, large-scale changes in tropospheric temperature (TT) due to the boundary forcing can induce interannual variations of the timing and duration of the monsoon season. The concept of interannually varying monsoon season is introduced here, with the onset and withdrawal of monsoon definitions based on the reversal of meridional gradient of TT between north and south. This large scale definition of the monsoon season is representative of the planetary scale influence of the El Ni˜no Southern Oscillation (ENSO) on monsoon through the modification of TT and the cross equatorial pressure gradient over the ISM region. A sig- nificant relationship between ENSO and monsoon, that has remained steady over the decades, is discovered by which an El Ni˜no (La Ni˜na) delays (advances) the onset, advances (delays) the withdrawal and suppresses (enhances) the strength of the monsoon. The integral effect of the meridional gradient of TT from the onset to withdrawal proves to be a useful index of seasonal monsoon which isolates the boundary forced signal from the influence of internal variations that has remained steady even in the recent decades. However, consistent with the estimates of potential predictability, the boundary forced variability isolated with the above definitions explains only about 50% of the total interannual variability of ISM. Detailed diagnostics of the onset and withdrawal processes are performed to understand how the ENSO forcing modifies the onset and withdrawal, and thus the seasonal mean monsoon. It is found that during an El Ni˜no, the onset is delayed due to the enhanced adiabatic subsidence that inhibits vertical mixing of sensible heating from the warm landmass during pre-monsoon months, and the withdrawal is advanced due to the horizontal advective cooling.

Mots clé : Monsoon - Forecasting - India Monsoon - Interannual Variability Atmospheric General Circulation Model (AGCM) Simulations Monsoon Intraseasonal Oscillations El Nino Southern Oscillation - Monsoon Indian Summer Monsoon (ISM) ENSO-Monsoon Intraseasonal Oscillations (ISOs) Community Climate Model Version 3 (CCM3)

Présentation (ETD IISC)

Page publiée le 8 octobre 2010, mise à jour le 16 février 2021