Accueil du site
Doctorat
États-Unis
2021
Management of stem rot of peanut using optical sensors, machine learning, and fungicides
Titre : Management of stem rot of peanut using optical sensors, machine learning, and fungicides
Auteur : Wei, Xing
Université de soutenance : Virginia Polytechnic Institute and State University
Grade : Doctor of Philosophy (PhD) 2021
Résumé partiel
Stem rot of peanut (Arachis hypogaea L.), caused by a soilborne fungus Athelia rolfsii (Curzi) C. C. Tu and Kimbr. (anamorph : Sclerotium rolfsii Sacc.), is one of the most important diseases in peanut production worldwide. Though new varieties with increased partial resistance to this disease have been developed, there is still a need to utilize fungicides for disease control during the growing season. Fungicides with activity against A. rolfsii are available, and several new products have been recently registered for control of stem rot in peanut. However, fungicides are most effective when applied before or during the early stages of infection. Current scouting methods can detect disease once signs or symptoms are present, but to optimize the timing of fungicide applications and protect crop yield, a method for early detection of soilborne diseases is needed. Previous studies have utilized optical sensors combined with machine learning analysis for the early detection of plant diseases, but these studies mainly focused on foliar diseases. Few studies have applied these technologies for the early detection of soilborne diseases in field crops, including peanut. Thus, the overall goal of this research was to integrate sensor technologies, modern data analytic tools, and properties of standard and newly registered fungicides to develop improved management strategies for stem rot control in peanuts.
Page publiée le 7 décembre 2022