Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 2022 → Leveraging genomic mapping and QTL analysis to enhance drought tolerance of cultivated peanut (Arachis hypogaea L.)

Virginia Polytechnic Institute and State University (2022)

Leveraging genomic mapping and QTL analysis to enhance drought tolerance of cultivated peanut (Arachis hypogaea L.)

Kumar, Naveen

Titre : Leveraging genomic mapping and QTL analysis to enhance drought tolerance of cultivated peanut (Arachis hypogaea L.)

Auteur : Kumar, Naveen

Université de soutenance : Virginia Polytechnic Institute and State University

Grade : Doctor of Philosophy (PhD) 2022

Peanut (Arachis hypogaea L.) is second major legume crop grown after soybean in the United States, and its productivity is often limited by drought stress. Drought negatively impacts the yield and quality of peanut. Drought stress in peanut causes an annual loss of approximately $520 million in the United States. Improving peanut yield under water deficit conditions is crucial for peanut growers to maintain their profitability in the market. To achieve this, it is essential to either breed or adopt already available drought tolerant cultivars that can produce higher yield under water deficit conditions. Therefore, the objectives of this research were to (1) evaluate five commercially available virginia and runner type peanut cultivars for pod yield stability using multilocation trials by studying G x E interaction across 13 environments including year, location, and irrigation regime. Linn and Binns, AMMI, Shukla, Wricke’s, Finlay and Wilkinson stability models were used to determine pod yield stability. Bailey and Sullivan showed higher stability and adaptability across all stability indices whereas Wynne and TUFRunner presented high mean productivity with lesser stability across environments reflecting specific adaptation to just a few environments. Bailey and Sullivan are recommended for sustainable production across the growing region of Virginia and Carolinas. The second objective (2) was identification of drought tolerance related quantitative trait loci (QTL) and genetic markers to facilitate the development of drought tolerant cultivars. Three diverse recombinant inbred line (RIL) populations, derived from crossing lines N05006 x N04074FCT (Pop-1), line N05006 x Phillips, an old virginia-type cultivar (Pop-2), and lines N08086olJCT x PI 585005 (Pop-3) were phenotyped for the Normalized Difference Vegetation Index (NDVI), Canopy Temperature Depression (CTD), SPAD-meter relative chlorophyll content of the leaves (SPAD) and wilting for QTL mapping. Mapping identified 27 minor QTL on eight chromosomes for all physiological characteristics, i.e NDVI, CTD, SPAD and wilting, with logarithmic of odds values ranging from 2.5 to 38.5 and the phenotypic variance explained by these traits from 1.04 to 11.46 %. There were 4 loci on chromosome 2 associated with NDVI in Pop-1 and Pop-3, explaining 1.8 to 10.38% of the phenotypic variation. These genomic regions may be important resources in peanut breeding programs to improve drought tolerance. Further research is needed to increase the marker density in order to fine map the identified QTL and validate markers linked with these regions.


Version intégrale (11,4 Mb)

Page publiée le 3 décembre 2022