Accueil du site
Master
Pérou
Estudio de la distribución espacial de la precipitación mediante productos de percepción remota en la cuenca alta de Piura
Titre : Estudio de la distribución espacial de la precipitación mediante productos de percepción remota en la cuenca alta de Piura
Auteur : Navarro Ventura, Edison Emiliano
Université de soutenance : Universidad Nacional de Ingeniería (UNI),
Grade : Ingeniería Civil 2019
Résumé
Caracterizar la variabilidad espacial y temporal de la precipitación es una tarea muy importante para llevar a cabo una adecuada gestión del agua ; sin embargo, es difícil caracterizar la precipitación en especial en zonas donde exista una alta variabilidad espacial y exista escaso número de estaciones pluviométricas, como es el caso del Perú. En la actualidad, la información derivada de imágenes satelitales permite complementar y mejorar la distribución espacial de la precipitación, pero estos requieren ser corregidos de manera temporal y espacial. En este estudio se realizó de la distribución espacial de la precipitación pluvial en la cuenca alta del río Piura (4,505 km2), al correlacionar los registros de precipitación de nueve (09) estaciones pluviométricas mediante redes neuronales artificiales de base radial con la información obtenida de percepción remota. La información satelital está integrada por la Misión de Medición de Precipitaciones Tropicales (TRMM, por sus siglas en inglés), específicamente el producto 3B42-RT, la Misión Topográfica de Radar Shuttle (SRTM, por sus siglas en inglés) y el Índice Normalizado de Diferencia de Vegetación (NDVI, por sus siglas en inglés), los cuales han sido utilizadas con el fin de distribuir espacialmente la precipitación a una resolución espacial de 1km2 en la cuenca alta del río Piura durante los años 2000 y 2010, esto debido a la resolución espacial y temporal que presenta el NDVI. En primer lugar, se realizó la regionalización de la precipitación de la zona de estudio mediante el método del vector regional (MVR) en base a las nueve 09 estaciones pluviométricas disponibles en la zona de estudio ; con esta, se identificaron dos regiones climáticas : la región 01 cuenca baja de la zona de estudio con seis (06) estaciones y la región 02 cuenca alta de la zona de estudio con 03 estaciones. Mediante la implementación de redes neuronales de base radial y en base a las regiones identificadas, se realizó la completación de datos de precipitación a nivel diario y decadiario de las estaciones pluviométricas. La información satelital del NDVI, cuya resolución espacial de 1km2 y temporal de 10 días, fue corregida mediante la técnica de suavizado no paramétricos “rloees” (regresión polinómica ponderada) y ventanas móviles para mejorar la representación espacial y temporal. Asimismo, mediante la superposición de la información espacial de cobertura vegetal, el NDVI y la información topográfica del modelo de elevación digital SRTM ; se identificó la relación entre la vegetación y la altura, la cual mostro dos regiones climáticas similares a las identificadas mediante el vector regional, que se encuentran influenciadas por la variación de la gradiente de temperatura y humedad de la costa peruana representada por el Instituto Geofísico del Perú, (IGP).
Page publiée le 27 février 2023