Accueil du site
Doctorat
Finlande
Improving soil properties with Acacia seyal agroforestry and biochar : implications for sorghum production on the drylands of South Sudan
Titre : Improving soil properties with Acacia seyal agroforestry and biochar : implications for sorghum production on the drylands of South Sudan
Auteur : Deng, Biar
Université de soutenance : University of Helsinki,
Grade : Doctoral dissertation (article-based) // Doctoral Programme in Sustainable Use of Renewable Natural Resources 2020
Résumé partiel
Rainfed agriculture is a vital land use practice for food security and economic development in most of drylands, but particularly in sub-Saharan Africa (SSA). However, it is becoming an increasingly uncertain and inefficient practice in SSA because of climate change and extremes (i.e. low and erratic rainfall, high temperatures, floods, and drought occurrence), and low soil fertility and water supply. For example, yields of sorghum, which is the main staple food crop in South Sudan, are dwindling under rainfed cultivation in its main production areas in the north of the country due to the previously mentioned factors. Nevertheless, soil amendment materials, such as biochars, along with integration of sorghum production into agroforestry systems, which can improve soil fertility and water storage capacity, could assist in improving the crop yields. In this dissertation, the effects of Acacia seyal-based agroforestry and addition of biochar on soil water retention and supply and on sorghum yields were examined. The research focused on 1) the potential of using biochar as a soil amendment combined with A. seyal-based agroforestry in a field experiment, 2) the effect of biochar on alleviating water stress on sorghum yield in greenhouse conditions, and 3) simulation of the potential effect of biochar amendments on improving sorghum biomass and grain yield, especially as indicated by differences in yield between wet and dry years. The two-year agroforestry field experiment (Paper I) was carried out at Magara Village north of Renk in South Sudan, during the growing seasons of 2011 and 2012. The split block experiment included three A. seyal tree density treatments : no trees ; scattered trees (100 trees ha-1) and dense trees (400 trees ha-1) and two biochar amendment treatments (0 t ha-1 and 10 t ha-1). The soil consisted of silty loam underlain by clay, and the biochar source was A. seyal trees. A soil analysis showed that agroforestry resulted in lower soil pH, N, and total and exchangeable Ca2+ contents and higher C/N ratios compared to sole sorghum cultivation. The application of biochar significantly increased the soil C and exchangeable K+ contents as well as the pedotransfer-derived field capacity and plant available water contents, but significantly decreased the content of exchangeable Ca2+ and cation exchange capacity. The inclusion of A. seyal trees significantly decreased the sorghum grain yields, and the effect of biochar on grain yield compared to sole sorghum cultivation without amendment was not significant. The Land Equivalent Ratio (LER, the sum of the fractions of the intercropped yields divided by the sole-crop yields) value was 0.3 for dense A. seyal intercropping combined with biochar in both 2011 and 2012 and with scattered A. seyal intercropping in 2011, but it was twofold greater (0.6) in 2012 with biochar amendment.
Page publiée le 19 mai 2023