Accueil du site
Doctorat
Allemagne
2011
The Cenozoic salt diapir near Eyvanekey and Garmsar, Iran : new insights from structural investigations and analogue modeling
Titre : The Cenozoic salt diapir near Eyvanekey and Garmsar, Iran : new insights from structural investigations and analogue modeling
Auteur : Baikpour, Shahram
Université de soutenance : Johann Wolfgang Goethe-Universität Frankfurt am Main
Grade : Doktorgrades der Naturwissenschaften 2011
Résumé partiel
The Alborz Mountains are forming a 100 km wide, E-W trending mountain chain where individual summits are up to 5000 m in elevation. The Alborz Mountains range are part of the Alpine orogen and are straddling a 2000 km wide area S of the Caspian Sea. The rocks of the Alborz Mountains consist of Neogen sediments, which are affected by folding and faulting. In the western part of the Alborz Mountains the folds and faults are trending NW-SE, whereas in the eastern part they are trending NE-SW. GPS data confirm N-S shortening including dextral strike-slip along ESE-WNW trending faults, and sinistral strike-slip along ENE-WSW trending faults. The present thesis is focusing on the active Garmsar salt nappe, the fragmented roof of which is pierced by rock salt which extruded near the front of the Alborz Mountains Range. During the past 5 m.y. the front of the Alborz chain migrated towards SSW on top of the salt of the Garmsar basin. The salt was squeezed towards SSW and took place at the Great Kavir. The extruded salt is forming the Eyvanekey plateau between the cities of Eyvanekey and Garmsar. Both the Garmsar salt nappe and the Eyvanekey plateau are dextrally displaced for ca. 9 km along the Zirab-Garmsar fault. Structural analyses of the Garmsar salt nappe indicate three different groups of joints which are trending perpendicular and parallel to the local mechanical anisotropy. The folds of the study area are congruent (type 2 and 3 after Ramsay) resulting from viscose inhomogeneous flow. InSAR-Investigations suggest the Alborz Mountains to be lifted up by ca. 1 cm/a, while horizontal shortening is active at a rate of 8 ±2 mm/a. These values are consistent with GPS data. Based on nine „Advanced Synthetic Aperture Radar“ (ASAR) scenarios, produced by the ENVISAT satellite of the European space agency between 2003 and 2006, we used interferograms to map the displacement via 22 increments during 2 – 18 months. The results suggest that the topographic height of the surface of the salt is changing at a rate which is controlled by the season. The displacement ranges from subsidence at -40 to -50 mm/a to uplift of 20 mm/a. In order to investigate the time-dependent deformation with high spatial resolution, we used algorithms which are based on data of small base lines (SBAS).
Page publiée le 20 avril 2023