Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 2011 → Implications of surface runoff recharge in semi-arid regions on groundwater sustainability

University of Texas at El Paso (2011)

Implications of surface runoff recharge in semi-arid regions on groundwater sustainability

Al-Qudah, Omar Mohammad

Titre : Implications of surface runoff recharge in semi-arid regions on groundwater sustainability

Auteur : Al-Qudah, Omar Mohammad

Université de soutenance : University of Texas at El Paso

Grade : Doctor of Philosophy (PhD) 2011

Résumé
Amargosa Desert, Nevada regional groundwater studies show that the surface runoff infiltration occurring in the arroyos following runoff producing storms, and this infiltration is considered to be a major source of groundwater recharge. Groundwater infiltration through alluvium was investigated in the Amargosa Desert using borehole drill cuttings, groundwater chemistry, and applying a novel method for collecting runoff water. The sampling process included sediment, precipitation, and runoff water. In total, 176 runoff, 182 sediment, and 45 precipitation samples were collected between January, 2009 and January, 2011.Water chemistry, chloride concentrations, and stable isotopes of water collected from specially designed runoff samplers, placed in the main ephemeral arroyo and its tributaries in the Amargosa Desert, closely match the chemistry of underlying groundwater where a plume of low chloride water underlies the arroyos until it connects with the Amargosa River. This evidence indicates that current and past infiltration of surface runoff (stormwater) is the primary source of the underlying groundwater plume. The results suggest that infiltration of surface runoff from large storm events in this region is a source of recharge more important that previously realized. Furthermore, the analyses of results indicate that the dominant processes and reactions responsible for the hydrochemical evolution in the Amargosa Desert water system are (1) evaporative concentration prior to infiltration, (2) carbonate equilibrium, (3) silicate weathering reactions, (4) limited mixing with saline water, (5) dissolution/precipitation of calcite, dolomite and fluorite, and (6) ion exchange. The results also indicate that the northern west face of Yucca Mountain groundwater is fresh water, Fortymile Wash groundwater is dilute, and the carbonate signature is shown in the Ash Meadows and Death Valley waters. Moreover, the results show three main groundwater signatures indicating groundwater evolution, potential flowpaths, and recharge areas. The flowpaths are the trace of the Amargosa River, the trace of Fortymile Wash, and its convergence with the Amargosa River. This appears to represent not just a groundwater flow path, but traces of surface runoff infiltration as well.

Mots Clés : Groundwater, Recharge, Semi-arid regions, Surface runoff, Sustainability

Présentation (UMI Proquest)

Page publiée le 13 mai 2012, mise à jour le 24 septembre 2017