Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Royaume-Uni → 2006 → The physiological and genetic bases of water-use efficiency in winter wheat

University of Nottingham (2006)

The physiological and genetic bases of water-use efficiency in winter wheat

Baburai Nagesh, Aravinda Kumar

Titre : The physiological and genetic bases of water-use efficiency in winter wheat

Auteur : Baburai Nagesh, Aravinda Kumar

Université de soutenance : University of Nottingham

Grade : Doctor of Philosophy (PhD) 2006

Résumé partiel
Winter wheat (Triticum aestivum L.) is the most extensive arable crop in the UK grown on about 2M ha p.a. There is a need to identify traits to ameliorate yield losses to drought which are on average about 15% per year. These losses will be exacerbated with predicted climate change. The overall objectives of the present study were to investigate the physiological and genetic bases of water-use efficiency (ratio of above-ground dry matter production to evapotranspiration ; WUE) in winter wheat grown in UK conditions and to quantify relationships between WUE and yield performance under drought. The present study used a doubled haploid (DH) population of 33 lines derived from a cross between Beaver and Soissons, known from previous work to contrast for WUE. Two glasshouse experiments (2002/3 and 2003/4) and two field experiments (one at ADAS Gleadthorpe, Nottinghamshire in 2002/3 and the other at Sutton Bonington, University of Nottingham in 2004/5) were conducted. In the glasshouse experiments, two irrigation treatments (with and without irrigation) were applied to four genotypes (two parents and two DH lines), and in the field two irrigation treatments (rainfed and fully irrigated) were applied to the two parents and the 33 DH lines. A range of physiological traits was measured, including developmental stages, carbon isotope discrimination (Δ13C), leaf gas-exchange variables, green areas and biomass at sequential samplings, and these traits were related to grain yield. Transpiration efficiency (ratio of above-ground dry matter production to transpiration ; TE) was assessed using the established inverse relationship between TE and Δ13c. In the glasshouse, WUE measured as the regression slope of dry matter on water use, did not differ amongst genotypes in 2003, but did in 2004. Soissons showed higher WUE than other genotypes under irrigation, and also higher WUE than Beaver under drought. For measurements of TE according to Δ13. Soissons and line 134G showed lower Δ13C values (higher TE) than line 134E and Beaver in 2004 under both irrigation and drought. Soissons and line 134G showed consistently higher TE on account of lower stomatal conductance (gs ) and sub-stomatal C02 concentration (C) values. The early developing Soissons and line 134G exhibited greater flag-leaf green area persistence under drought than the late developing Beaver. Beaver tended to use more water than Soissons under both irrigation and drought, but reductions in water use under drought were similar amongst genotypes. Lower seasonal water use for Soissons than Beaver was associated with a smaller root system. There was a tendency for dry matter of Beaver to be more depressed under drought than Soissons in both the years. Overall, it was not possible to detect significant differences in biomass responses to drought amongst the genotypes, but there were consistent genetic differences in WUE and TE observed under both irrigated and droughted conditions.


Version intégrale (30 Mb)

Page publiée le 4 octobre 2012, mise à jour le 6 novembre 2018