Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 1989 → The chemistry and biology of insect growth regulators from plants in the genus Nama (Hydrophyllaceae)

University of Arizona (1989)

The chemistry and biology of insect growth regulators from plants in the genus Nama (Hydrophyllaceae)

Binder, Bradley Fletcher

Titre : The chemistry and biology of insect growth regulators from plants in the genus Nama (Hydrophyllaceae)

Auteur : Binder, Bradley Fletcher

Université de soutenance : University of Arizona

Grade : Doctor of Philosophy (PhD) 1989

Résumé
A strategy for the discovery of new insect growth regulators from arid lands plants was developed. Plant genera with a history of toxicity, medicinal use, or incorporation in native american cultures were selected. Forty-five species from twenty-one families were collected, extracted, and tested for biological activity on the large milkweed bug, Oncopeltus fasciatus. Eight extracts were toxic and the extract of Nama hispidum (Hydrophyllaceae) caused nymphs to undergo precocious metamorphosis to an adult. The active component of N. hispidum was precocene II (6,7-dimethoxy-2,2-dimethyl chromene). Nine Nama species, representing four of the five sections in the genus were gathered from Hawaii, California, Nevada, Arizona, New Mexico, and the Dominican Republic. In addition to the insect anti-hormone, precocene II (PII), present in N. hispidum, N. rothrockii contained at least two different insect juvenile hormone mimics, and N. sandwicense contained insect anti-hormone and insect juvenile hormone mimics. Fifth instar larvae of Heliothis zea were used as model insects to distinguish between post-ingestive intoxication and feeding deterrency during exposure to PII. Larvae fed artificial diet with PII were deterred from eating, and had retarded weight gain, growth, and development. Insects grown on diet with PII consumed less food, could not digest the food, or convert ingested food to body mass. in vivo radiotracer studies with the nutrient, ¹⁴C linoleic acid, show a lower rate of transport and incorporation of radioactivity into fat body tissue. A change in the midgut epithelial cells from PII resulted in reduced transport efficiency and retarded larval growth and development. Scanning electron microscopy of the midgut epithelia indicated that cytotoxic damage is induced by PII. Observed changes in the midgut epithelial cells are consistent with a destructive alkylation of cell structures by PII.

Mots clés : Hydrophyllaceae – Southwest, New. ; Juvenile hormones. ; Heliothis zea – Biological control. ; Insect-plant relationships. ; Growth regulators.

Présentation

Version intégrale (4,27 Mb)

Page publiée le 3 juin 2013, mise à jour le 29 décembre 2016