Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Inde → Impact Assessment Of Climate Change On Hydrometeorology Of River Basin For IPCC SRES Scenarios

Indian Institute of Science (2007)

Impact Assessment Of Climate Change On Hydrometeorology Of River Basin For IPCC SRES Scenarios

Anandhi, Aavudai

Titre : Impact Assessment Of Climate Change On Hydrometeorology Of River Basin For IPCC SRES Scenarios

Auteur : Anandhi, Aavudai

Organisme de soutenance : Indian Institute of Science

Grade : Doctoral PhD 2007

Résumé partiel
There is ample growth in scientific evidence about climate change. Since, hydrometeorological processes are sensitive to climate variability and changes, ascertaining the linkages and feedbacks between the climate and the hydrometeorological processes becomes critical for environmental quality, economic development, social well-being etc. As the river basin integrates some of the important systems like ecological and socio-economic systems, the knowledge of plausible implications of climate change on hydrometeorology of a river basin will not only increase the awareness of how the hydrological systems may change over the coming century, but also prepare us for adapting to the impacts of climate changes on water resources for sustainable management and development. In general, quantitative climate impact studies are based on several meteorological variables and possible future climate scenarios. Among the meteorological variables, sic “cardinal” variables are identified as the most commonly used in impact studies (IPCC, 2001). These are maximum and minimum temperatures, precipitation, solar radiation, relative humidity and wind speed. The climate scenarios refer to plausible future climates, which have been constructed for explicit use for investigating the potential consequences of anthropogenic climate alterations, in addition to the natural climate variability. Among the climate scenarios adapted in impact assessments, General circulation model(GCM) projections based on marker scenarios given in Intergovernmental Panel on Climate Change’s (IPCC’s) Special Report on Emissions Scenarios(SRES) have become the standard scenarios. The GCMs are run at coarse resolutions and therefore the output climate variables for the various scenarios of these models cannot be used directly for impact assessment on a local(river basin)scale. Hence in the past, several methodologies such as downscaling and disaggregation have been developed to transfer information of atmospheric variables from the GCM scale to that of surface meteorological variables at local scale. The most commonly used downscaling approaches are based on transfer functions to represent the statistical relationships between the large scale atmospheric variables(predictors) and the local surface variables(predictands). Recently Support vector machine (SVM) is proposed, and is theoretically proved to have advantages over other techniques in use such as transfer functions. The SVM implements the structural risk minimization principle, which guarantees the global optimum solution. Further, for SVMs, the learning algorithm automatically decides the model architecture. These advantages make SVM a plausible choice for use in downscaling hydrometeorological variables. The literature review on use of transfer function for downscaling revealed that though a diverse range of transfer functions has been adopted for downscaling, only a few studies have evaluated the sensitivity of such downscaling models. Further, no studies have so far been carried out in India for downscaling hydrometeorological variables to a river basin scale, nor there was any prior work aimed at downscaling CGCM3 simulations to these variables at river basin scale for various IPCC SRES emission scenarios. The research presented in the thesis is motivated to assess the impact of climate change on streamflow at river basin scale for the various IPCC SRES scenarios (A1B, A2, B1 and COMMIT), by integrating implications of climate change on all the six cardinal variables. The catchment of Malaprabha river (upstream of Malaprabha reservoir) in India is chosen as the study area to demonstrate the effectiveness of the developed models, as it is considered to be a climatically sensitive region, because though the river originates in a region having high rainfall it feeds arid and semi-arid regions downstream. The data of the National Centers for Environmental Prediction (NCEP), the third generation Canadian Global Climate Model (CGCM3) of the Canadian Center for Climate Modeling and Analysis (CCCma), observed hydrometeorological variables, Digital Elevation model (DEM), land use/land cover map, and soil map prepared based on PAN and LISS III merged, satellite images are considered for use in the developed models

Mots clés : Hydrometeorology – India ; Climatic Changes – India ; Hydrological Modeling ; Climate Variables – Downscaling ; General Climate Models ; Atmospheric General Circulation Models ; Oceanic General Circulation Models ; Hydrometeorological Variables ; Support Vector Machine Downscaling ; Climate Models – Disaggregation ; Global Circulation Models (GCMs) ; Downscaling Climate

Présentation

Version intégrale (9,3 Mb)

Page publiée le 17 octobre 2013, mise à jour le 4 avril 2018