Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 1999 → A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret


A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

Pan, Hai

Titre : A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

Auteur : Pan, Hai


Grade : Doctor of Philosophy (PhD) 1999

Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide and 22-km long), the micrometeorological conditions, lake currents and thermal structure, and the lake-surface heat fluxes vary spatially very significantly, even on a daily basis. It is found that the daily-mean wind curl, which is predominantly determined by the passage of the Mediterranean Sea breeze (MSB) over the lake, is mostly responsible for the gyres in the lake. The thermocline oscillation in the lake is mainly controlled by the surface elevation set up by the time-dependent winds. The intense MSB over the lake in the late afternoon pushes the heated surface water eastward, forces the deep, cooler water to be advected westward, and creates strong mixing in the lake, resulting in a higher temperature off the eastern shore and a lower temperature off the western shore. The variation of lake-surface temperature not only directly affects the atmospheric processes over the lake, but it also changes the wind field, which then influences hydrodynamic processes in the lake. An analytical model of the flow response to spatial variation of atmospheric cooling in coastal ocean was also developed in this study. This model is used to explain the contribution of the spatial variation of latent heat flux to the circulation in Lake Kinneret, and also the cyclonic flow, which is observed in many lakes and semi-enclosed coastal oceans.

Search Oxford Libraries Online (SOLO)

Page publiée le 12 novembre 2013, mise à jour le 27 octobre 2019