Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → 2012 → Climate-linked temporal and spatial patterns in the evolution of African bovidae

Johann Wolfgang Goethe - Universität in Frankfurt am Main (2012)

Climate-linked temporal and spatial patterns in the evolution of African bovidae

Schikora Tim F

Titre : Climate-linked temporal and spatial patterns in the evolution of African bovidae

Auteur : Schikora Tim F

Université de soutenance : Johann Wolfgang Goethe - Universität in Frankfurt am Main

Grade : Doktorgrades der Naturwissenschaften 2012

Résumé partiel
Climate and subsequent environmental changes are regarded as one driver of species evolution. Against this background the present study investigates the evolutionary history of the mammalian family Bovidae (Cetartiodactyla, Mammalia), today the most species-rich family of large herbivores on the African continent. Temporal and spatial patterns in that group’s evolution are the focus of the present study and were investigated using methods and data deriving from multiple disciplines (palaeontology, genetics, climatology, conservation biology). The results serve as a validation of macroevolutionary hypotheses of species evolution. A major proportion of African mammalian fossils can be assigned to that family. Due to their morphological adaptations, bovid species are highly indicative of their habitats. Hence, bovids are of great importance for paleontology. However, a strong taphonomic bias is present in the fossil record of bovids, favoring large and arid- adapted species. Molecular phylogenies of extant species and species distribution modelling combined with climate reconstructions can help to overcome these limitations. A molecular phylogeny, based on the cytochrome b gene of 136 bovid species served as basis for analysis of temporal patterns. Divergence events were dated using the relaxed molecular clock approach. The tree was time calibrated at 30 nodes using information inferred from the fossil record. Lineage-Through-Time plots and the respective statistical analyses reveal detailed temporal patterns in the evolutionary history of tribes and groups combining arid- and humid-adapted tribes. The resulting pattern shows three distinct phases. Phase 1 (P1) is dominated by speciation events within the humid group, while the second phase (P2) is marked by a dominance of speciation within the arid group. The switch in diversification rates (BDS) from P1 to P2 is dated to 2.8 million years ago. The third phase (P3) shows low diversification rates for all groups, starting around 1.4 million year ago and culminates in a significantly reduced diversification rate for the complete family at 0.8 million years ago. Both transitions are contemporaneous with global climate changes and turnover events in fossil faunal communities. To investigate the impact of climate changes onto the habitat availability within the last 3 million years and its putative influence on diversification rates, the species distribution modeling method was applied. For 85 African species and subspecies the climate niches were established and grouped into 5 climate-groups based on their climate preferences. For each group the available habitat for the period before and after the BDS was calculated on continental scale using reconstructed climate scenarios. To evaluate the modeled habitat distributions, regional analyses were performed in test areas surrounding well studied fossil sites (Laetoli, Olduvai, Chiwondo Beds, Lothagam, Koobi Fora, West Turkana, Swartkrans, Sterkfontain und Toros-Menalla). Habitat profiles (HP) permitted the comparison of the model based habitat reconstruction with the interpretations of classic paleontological reconstruction. The validity of the habitat modeling has been shown in particular for East African test areas. The reconstructions for the northern and southern fossil sites does not support the modeled habitats in these areas. Yet, the method of habitat- profiling may serve as suitable tool for environmental reconstruction of areas lacking sufficient paleontological material. A comparison of habitat availability before and after the BDS on continental scale identified a significant loss of habitat for humid adapted groups (7-22%) and habitat gain for arid adapted groups (19-173%). The climatically intermediate group experiences a tremendous gain of habitat (3366%). The greatest environmental change was modeled for East Africa, initiated by a progressive regional aridification.


Version intégrale (23,41 Mb)

Page publiée le 25 juin 2014, mise à jour le 2 janvier 2019