Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Master → Afrique du Sud → The status of soil organic carbon under indigenous forests, grasslands, wetlands and pine plantations in Woodbush, Limpopo Province, South Africa

University of Stellenbosch (2004)

The status of soil organic carbon under indigenous forests, grasslands, wetlands and pine plantations in Woodbush, Limpopo Province, South Africa

Mongwe, Hlamalani Godfrey

Titre : The status of soil organic carbon under indigenous forests, grasslands, wetlands and pine plantations in Woodbush, Limpopo Province, South Africa

Auteur : Mongwe, Hlamalani Godfrey

Université de soutenance : University of Stellenbosch

Grade : MScAgric 2004

Résumé
Storing soil organic carbon (SOC) is a possible way of reducing atmospheric CO2 and potentially mitigating the effects of global warming. This study looks at soil carbon stocks, the sampling methodology and modelling of soil organic carbon in indigenous forests, wetlands, grasslands and pine plantations in Woodbush in the North-Eastern escarpment of Limpopo Province, South Africa. Dominant Pine species planted in Woodbush are Pinus patula, Pinus elliotti and Pinus taeda. Woodbush plantation was selected as study area because it provided easy access to all the ecosystems that were to be studied. All ecosystems in Woodbush are located in such a way that it was easy to compare them, as they existed under similar environmental and climatic conditions. The climatic conditions of Woodbush promote accumulation of SOC due to relatively higher precipitation and cooler temperatures than most parts of Limpopo Province. Five transects were made : two in indigenous forests and three in plantations. Only the surface (0-7 cm) layer was sampled with a distance of 20 m between sampling points. Transects were not made in grasslands and wetlands because of the patchy occurrence of these ecosystems. In addition to transects, eight 1ha plots, two in each ecosystem, were sampled. Surface (0- 7 cm depth) samples were collected on a grid of 20 x 20 m in each sampling plot. Two soil profile pits were sampled in each sampling plot, with samples being taken at 5, 10, 15, 20 30, 40, 50 60, 75 and 100 cm depth. The average carbon stocks per hectare of land to a soil depth of 100 cm were as follows : 71 t.ha-1 in wetlands, 28 t.ha-1 in grasslands, 64 t.ha-1in indigenous forests, and 46 t.ha-1 in pine plantations. Although wetlands sequestered large amounts of SOC per hectare, their relative contribution to carbon sequestration was low because of the relatively small area (87.2 ha) they occupy in the study area (and in South Africa). Prediction models for vertical distribution of SOC were developed using STATISTICA 6.0 for each ecosystem in order to estimate the carbon stocks to a depth of 100 cm based on SOC content and soil bulk density of the surface samples. These models were developed from observed values in soil profiles for each ecosystem. SOC content and carbon stocks were analyzed using GIS (ARCVIEW). The GIS analysis was aimed at assessing the effect of topography, elevation, soil type, and vegetation on accumulation and distribution of SOC stocks. Most shallow Inanda soils were distributed at elevations between 1545 m and 1777 m, and on a gentle slope in the Northern aspect of the mountain. Deep Inanda soils were found mostly in the lower elevation range of 967 m and 1545 m on moderate slopes. Deep and shallow Inanda soils were found on the southern aspect. Deep Kranskop soils are evenly distributed and mostly found at an elevation range of between 1080 and 1430 m on gentle slopes, while at an elevation range of between 1430 and 1780 m, they were found on moderate slopes. Deep soils had higher SOC stocks than shallow soils and soils in the southern aspects had higher SOC stocks than in the northern aspects.

Présentation

Version intégrale (4,07 Mb)

Page publiée le 20 décembre 2014, mise à jour le 11 juin 2018