Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Espagne → 2011 → Desert dust characterization in Northern Africa, Middle East and Europe through regional dust modelling, and satellite-borne and ground-based observations


Desert dust characterization in Northern Africa, Middle East and Europe through regional dust modelling, and satellite-borne and ground-based observations

Basart Alpuente, Sara

Titre : Desert dust characterization in Northern Africa, Middle East and Europe through regional dust modelling, and satellite-borne and ground-based observations

Auteur : Basart Alpuente, Sara


Grade : Doctor of Philosophy (PhD) 2011

The impact of mineral dust upon climate, ecosystems and air quality represents a major scientific and societal issue. The aim goals of the present Ph.D. Thesis are to evaluate the behaviour and to improve the forecasting skills of a regional dust model and to characterize the desert dust content in Northern Africa, Europe and Middle East. An aerosol characterization was performed using long-term series of aerosol optical depth (AOD) from AERONET sun photometers. The results showed that mineral dust was the most important constituent in Northern Africa and Arabia. Small particles were abundant in sites close to urban and industrial areas of Continental and Eastern Europe and Middle East, and important contributions of biomass burning were observed in the sub-Sahel region in winter. Desert dust transport to Southern Europe was observed from spring to autumn and decreasing with latitude with contributions above 40% to the aerosol column load. Dust models are essential to complement dust-related observations, understand the dust processes and predict the impact of dust on air quality. Despite that the BSC-DREAM8b model has reached a level of delivering reliable operational dust forecasts, it is necessary to conduct an extensive evaluation of its behaviour. The BSC-DREAM8b and the original DREAM models and different research model versions were evaluated over Northern Africa, Mediterranean and Middle East using AERONET measurements and seasonal averages from satellite aerosol products. The model evaluation highlighted that BSC-DREAM8b and DREAM strongly underestimated the dust fields in the Sahel during winter and overestimated dust concentrations during spring rainy events in the Mediterranean. The introduction of new dry deposition scheme and an updates in the wet deposition scheme improved the long-range transport, although significant underestimation remained in the Sahel in winter. The inclusion of a preferential source mask improved the localization of the main North African sources and the long-range dust transport to Europe and Atlantic regions. The inclusion of a more physically-based dust emission scheme with a new soil texture database led to reasonably good results at source areas and subsequent long-range transport. In this case, the use of a preferential source mask didn¿t introduce significant improvements. The long-range dust transport over Europe was evaluated and analysed with an annual simulation of the CALIOPE air quality modelling system. CALIOPE includes CMAQ which calculates biogenic, anthropogenic and sea salt aerosol ; and BSC-DREAM8b which provides desert dust. For the evaluation, we used daily PM10, PM2.5 and aerosol components from the EMEP/CREATE network ; total, coarse and fine AOD from AERONET and seasonal averages from satellite aerosol products. Overall CALIOPE could reproduce reasonably well the daily variability of the main components and the seasonal aerosol patterns in Europe. However, the PM and AOD levels were underestimated. The most underestimated aerosol components were carbonaceous matter and secondary inorganic aerosols (SIA). A simple model bias correction based on the chemical composition observations was applied to the model simulation to provide an estimation of the spatial and seasonal distribution of aerosols over Europe. The simulated aerosol concentrations presented maximum values over the industrialized and populated areas of the Po Valley and the Benelux regions. SIA were dominant in the fine fractions representing up to 80% of the aerosol budget in latitudes beyond 40ºN. A second maximum was detected over Eastern and Southern Europe. High values in Southern Europe were linked to Saharan dust transport which contributed up to 40% of the total aerosol mass. Maxima dust seasonal concentrations were found between spring and early autumn. These results showed that desert dust is the main responsible of the exceedances of the PM10 EU air quality threshold in large areas south of 45ºN.

Mots clés : Informàtica ; Natura. Estudi ; Conservació I Protecció De La Natura ; Ciències Del Medi Ambient

Présentation et version intégrale (TDX)

Page publiée le 1er décembre 2014, mise à jour le 18 février 2019