Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Brésil → Mapeamento Semiautomático de Cultivos Ilícitos de Cannabis Sativa no Semiárido Pernambucano mediante Integração de Imagens SPOT 5 HRG, Dados Geográficos Auxiliares e Conhecimento de Campo

Universidade de Brasília (2011)

Mapeamento Semiautomático de Cultivos Ilícitos de Cannabis Sativa no Semiárido Pernambucano mediante Integração de Imagens SPOT 5 HRG, Dados Geográficos Auxiliares e Conhecimento de Campo

Lisita, Alessandra

Titre : Mapeamento Semiautomático de Cultivos Ilícitos de Cannabis Sativa no Semiárido Pernambucano mediante Integração de Imagens SPOT 5 HRG, Dados Geográficos Auxiliares e Conhecimento de Campo

Semi-automatic mapping of illegal cultivations of Cannabis sativa in the semi-arid region of Pernambuco state by integration of Spot 5 - HRG images, ancillary geographical data and field knowledge

Auteur : Lisita, Alessandra

Université de soutenance : Universidade de Brasília

Grade : Doutorado em Geologia 2011

Résumé
The Cannabis sativa is the most demanded, illegal drug in the world, ahead of anfetamins, cocaine, and opiates. Cannabis planting and selling are prohibited in Brazil. The goal of this research was to develop an approach to detect illegal cultivations of Cannabis sativa in the semi-arid region of Pernambuco State, Brazil. The method included SPOT 5 satellite imageries, ancillary geographic data, field knowledge, fuzzy spatial modelling and object-oriented image classification. We analyzed field data gathered by police operations to destruct illegal plantations in June, 2007, November, 2007, May, 2008, and May, 2010 ; SPOT 5 HRG satellite images with overpasses from May, 2005 to December, 2010 ; and ancillary geographic data related to topography, vegetation, and land use. They were analyzed in a GIS data integration framework to prospect relevant spectral, spatial, and/or temporal patterns for definition of an operational model to indicate potential areas of occurrence of Cannabis plantations in the study area. The fuzzy model was important to produce a map indicating numerical possibilities of occurrence of Cannabis plantations in different regions of the study area. The object-oriented image classification allowed a semi-automatic detection of features compatible to Cannabis plantations in the SPOT images. Results showed that the approach proposed in this study is feasible for identifying potential areas ofoccurrence of Cannabis cultivation in semi-arid regions and at a regional scale. It also can be, in some extent, adapted to other regions of the country or even to other countries with similar challenge.

Mots clés : Droga Sensoriamento remoto Maconha - cultivo - Pernambuco Sistemas de informação geográfica Geologia - processamento de dados

Présentation

Version intégrale (5,15 Mb)

Page publiée le 9 janvier 2015, mise à jour le 21 juillet 2017