Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Canada → Phosphorus fractions and rock phosphate transformations in soils from different landscape positions in northern Ghana

University of Saskatchewan (1996)

Phosphorus fractions and rock phosphate transformations in soils from different landscape positions in northern Ghana

Abekoe, Mark Kofi

Titre : Phosphorus fractions and rock phosphate transformations in soils from different landscape positions in northern Ghana

Auteur : Abekoe, Mark Kofi

Université de soutenance : University of Saskatchewan

Grade : Doctor of Philosophy (PhD) 1996

Résumé
Phosphorus (P) is an essential plant nutrient and is one of the most critical elements influencing crop production throughout the world. Phosphorus deficiency is widespread in most soils of northern Ghana, and ferruginous nodules contained in some soils in the region accentuate the deficiency problem because they act as P sinks. This research focuses on P fertility status of soils in landscapes common to northern Ghana. Three sites were selected for the study and were referred to as sites 1, 2 and 3. Soils in a catenary sequence from site 1 were sampled for detailed P distributions in profiles, and surface soils from the upper, mid and lower slope positions of the other landscapes (sites 2 and 3) were used. The nature of P in the soil fines and ferruginous nodules was investigated using a modified Hedley fractionation procedure. The objective was to quantify the labile and non-labile inorganic P (Pi) and organic P (Po) in relation to pedogenic weathering processes at different slope positions at site 1. A secondary objective was to assess the P distribution in the landscapes at sites 2 and 3. The largest P fraction in both soil fines and nodules at each site was resistant non-labile P forms. Primary P (Ca-P) decreased with depth in the profile at the upper slope position but it occurred in greater quantities in C horizons of the lower slope soils. Phosphorus sorption capacity of the soil fines and nodules was determined to predict the behaviour of P fertilizers in the soils. Phosphorus sorption by the soil fines increased to a maximum in the B horizon of each profile and a t-test showed that P sorption was similar in profiles at each slope position. The P sorption capacities of uncrushed ferruginous nodules varied according to their sizes. The small nodules were more reactive and sorbed more P than the larger sizes. Fractionation of P from the nonfertilized and fertilized soils at the end of cropping and anion exchange resin (AER) extraction, revealed that there had been redistribution of P into different fractions. A comparison of P fractions of the nonfertilized soils after the AER extraction with those of the native soil P showed decreases in some native labile and non-labile P fractions. This suggested that these P fractions could be available for plant uptake. Both 50% PAPR and SSP fertilizations increased the labile Pi and NaOH extractable Pi levels in the soils.

Mots clés : soil science soil fertility - northern Ghana soils - phosphorus distribution phosphorus sorption Hedley fractionation

Présentation

Version intégrale (9,64 Mb)

Page publiée le 2 mars 2015, mise à jour le 13 février 2017