Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Royaume-Uni → 2010 → Spatial and temporal distribution of groundwater recharge in the West Bank using remote sensing and GIS techniques

Durham University (2010)

Spatial and temporal distribution of groundwater recharge in the West Bank using remote sensing and GIS techniques

Khalaf, Adla Jamil

Titre : Spatial and temporal distribution of groundwater recharge in the West Bank using remote sensing and GIS techniques

Auteur : Khalaf, Adla Jamil

Université de soutenance : Durham University

Grade : Doctor of Philosophy (PhD) 2010

Résumé
Estimating groundwater recharge to aquifer systems is a very important element in assessing the water resources of the West Bank. Of particular interest is the sustainable yield of the aquifers. Previous studies have developed analytical recharge models that are based on the long-term annual rainfall data. These models have been shown to be inadequate and changes over shorter periods, e.g. monthly estimates, must be known in order to study the temporal distribution of recharge. The approach used in this research integrates data derived from satellite images (e.g. land cover, evapotranspiration, rainfall, and digital elevation model) with hydrogeological data in a Geographic Information System (GIS) model to identify and map the surface recharge areas. The Surface Energy Balance Algorithm for Land (SEBAL) is applied to time series of remote sensing MODerate Resolution Imaging Spectroradiometer (MODIS) level 3 data of reflectance and surface temperature measurements to estimate monthly evapotranspiration ; precipitation is derived from the monthly data sets of the Tropical Rainfall Measuring Mission (TRMM) ; runoff is given assumed values of 0.75 mm month-1 and 0.4 mm month-1 for the months of January and February, respectively. Recharge is quantified from November until March by applying the water balance method where evapotranspiration estimates and runoff are subtracted from precipitation. Results show good agreement between data reported in the literature and remote sensing-based analysis. Empirical models that are based on long term rainfall measurements suggest recharge values between 800 and 836 MCM yr-1 while the remote sensing based model results estimate recharge to be 700 MCM yr-1. The Western, North-Eastern, and Eastern Aquifer Basins receive 30%, 23%, and 47% of the total calculated recharge while percentages available in the literature provide 49%, 22%, and 29%, respectively. Discrepancies are mainly due to lack of field data, the overestimation of actual evapotranspiration, and underestimation of TRMM precipitation values. The recharge map indicates that the most effective groundwater recharge zones are located in the north and west of the area that is characterised by thick and well developed soil deposits, heavy vegetation, and a sub-humid climate with the potential of significant recharge occurring during the wet season. Some areas in the east include concentration of drainage and stream flows which increase the ability of to recharge the groundwater system. The least effective areas are in the south and south-west region that is more arid with much less recharge, mainly due to its isolated thin soil deposits. A sensitivity analysis was carried out to demonstrate the impact of land cover change on groundwater and natural recharge. The assessment involved the use of land covers of 1994 and 2004 with the same fixed parameters of evapotranspiration, precipitation, drainage, slope, soil, and geology. Results show a decrease in high and intermediate high recharge areas from 40.25 km2 and 2462.25 km2 in year 1994 to 15.5 km2 and 1994 km2 in 2004, respectively. This illustrates the extent of land cover/land use change influence on recharge and calls for integrated plans and strategies to preserve recharge at least at its current rates.

Mots clés : Groundwater recharge, remote sensing, GIS, SEBAL, evapotranspiration, precipitation,TRMM

Présentation

Version intégrale

Page publiée le 7 novembre 2015, mise à jour le 20 octobre 2018