Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin : derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model

Universität Würzburg (2013)

Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin : derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model

Fritsch Sebastian

Titre : Spatial and temporal patterns of crop yield and marginal land in the Aral Sea Basin : derivation by combining multi-scale and multi-temporal remote sensing data with alight use efficiency model

Räumliche und zeitliche Muster von Erntemengen und marginalem Land im Aralseebecken : Erfassung durch die Kombination von multiskaligen und multitemporalen Fernerkundungsdaten mit einem Lichtnutzungseffizienzmodell

Auteur : Fritsch Sebastian

Université de soutenance : Universität Würzburg

Grade : Doctoral Thesis 2013

Résumé
Irrigated agriculture in the Khorezm region in the arid inner Aral Sea Basin faces enormous challenges due to a legacy of cotton monoculture and non-sustainable water use. Regional crop growth monitoring and yield estimation continuously gain in importance, especially with regard to climate change and food security issues. Remote sensing is the ideal tool for regional-scale analysis, especially in regions where ground-truth data collection is difficult and data availability is scarce. New satellite systems promise higher spatial and temporal resolutions. So-called light use efficiency (LUE) models are based on the fraction of photosynthetic active radiation absorbed by vegetation (FPAR), a biophysical parameter that can be derived from satellite measurements. The general objective of this thesis was to use satellite data, in conjunction with an adapted LUE model, for inferring crop yield of cotton and rice at field (6.5 m) and regional (250 m) scale for multiple years (2003-2009), in order to assess crop yield variations in the study area. Intensive field measurements of FPAR were conducted in the Khorezm region during the growing season 2009. RapidEye imagery was acquired approximately bi-weekly during this time. The normalized difference vegetation index (NDVI) was calculated for all images. Linear regression between image-based NDVI and field-based FPAR was conducted. The analyses resulted in high correlations, and the resulting regression equations were used to generate time series of FPAR at the RapidEye level. RapidEye-based FPAR was subsequently aggregated to the MODIS scale and used to validate the existing MODIS FPAR product. This step was carried out to evaluate the applicability of MODIS FPAR for regional vegetation monitoring. The validation revealed that the MODIS product generally overestimates RapidEye FPAR by about 6 to 15 %. Mixture of crop types was found to be a problem at the 1 km scale, but less severe at the 250 m scale. Consequently, high resolution FPAR was used to calibrate 8-day, 250 m MODIS NDVI data, this time by linear regression of RapidEye-based FPAR against MODIS-based NDVI. The established FPAR datasets, for both RapidEye and MODIS, were subsequently assimilated into a LUE model as the driving variable. This model operated at both satellite scales, and both required an estimation of further parameters like the photosynthetic active radiation (PAR) or the actual light use efficiency (LUEact). The latter is influenced by crop stress factors like temperature or water stress, which were taken account of in the model. Water stress was especially important, and calculated via the ratio of the actual (ETact) to the potential, crop-specific evapotranspiration (ETc). Results showed that water stress typically occurred between the beginning of May and mid-September and beginning of May and end of July for cotton and rice crops, respectively. The mean water stress showed only minor differences between years. Exceptions occurred in 2008 and 2009, where the mean water stress was higher and lower, respectively. In 2008, this was likely caused by generally reduced water availability in the whole region. Model estimations were evaluated using field-based harvest information (RapidEye) and statistical information at district level (MODIS). The results showed that the model at both the RapidEye and the MODIS scale can estimate regional crop yield with acceptable accuracy. The RMSE for the RapidEye scale amounted to 29.1 % for cotton and 30.4 % for rice, respectively. At the MODIS scale, depending on the year and evaluated at Oblast level, the RMSE ranged from 10.5 % to 23.8 % for cotton and from -0.4 % to -19.4 % for rice. Altogether, the RapidEye scale model slightly underestimated cotton (bias = 0.22) and rice yield (bias = 0.11). The MODIS-scale model, on the other hand, also underestimated official rice yield (bias from 0.01 to 0.87), but overestimated official cotton yield (bias from -0.28 to -0.6). Evaluation of the MODIS scale revealed that predictions were very accurate for some districts, but less for others. The produced crop yield maps indicated that crop yield generally decreases with distance to the river. The lowest yields can be found in the southern districts, close to the desert. From a temporal point of view, there were areas characterized by low crop yields over the span of the seven years investigated. The study at hand showed that light use efficiency-based modeling, based on remote sensing data, is a viable way for regional crop yield prediction. The found accuracies were good within the boundaries of related research. From a methodological viewpoint, the work carried out made several improvements to the existing LUE models reported in the literature, e.g. the calibration of FPAR for the study region using in situ and high resolution RapidEye imagery and the incorporation of crop-specific water stress in the calculation

Mots clés  : Baumwollpflanze ; Erdbeobachtung ; Ernte ; Fernerkundung ; Modellierung ; Reis ; Satellit — crop yield ; irrigation ; light use efficiency ; modeling ; remote sensing

Présentation et version intégrale

Page publiée le 30 décembre 2015, mise à jour le 5 janvier 2019