Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Master → Afrique du Sud → 2015 → Biodiversity conservation in a fragmented landscape : arthropod assemblages in smaller corridors within a production landscape

Stellenbosch University (2015)

Biodiversity conservation in a fragmented landscape : arthropod assemblages in smaller corridors within a production landscape

van Schalkwyk, Julia

Titre : Biodiversity conservation in a fragmented landscape : arthropod assemblages in smaller corridors within a production landscape

Auteur : van Schalkwyk, Julia

Université de soutenance : Stellenbosch University

Grade : Master of Science (MS) 2015

Habitat loss and fragmentation are major threats to global biodiversity. A cornerstone of traditional conservation involves setting aside land as formally protected areas (PAs). However, for effective biological conservation in the long term there needs to be connectivity between these PAs. When possible, improved connectivity can be achieved using natural corridors at a landscape scale. Even better is to establish a network of corridors and nodes in the form of ecological networks (ENs). ENs are currently being employed by commercial forestry companies in South Africa. While larger corridors and nodes are considered optimum, factors other than design, such as management and environmental heterogeneity, have also been found to be important for species maintenance. This study aims to explore the role of corridor width in driving the composition of invertebrate assemblages across a transformed landscape in KwaZulu-Natal, South Africa, and to investigate other possible environmental variables significant for species distributions. In Chapter 2, I investigated the contribution of smaller grassland corridors within a timber production matrix to overall biodiversity conservation using two important bioindicator taxa. Ants and dung beetles were sampled in grassland corridors of three size classes, plantation blocks and a nearby PA, iMpendle Nature Reserve. The two taxa showed differential responses to landscape level fragmentation. Dung beetles showed a decrease in species richness and corresponding increase in species turnover with increased fragmentation, while ants were unaffected, although counter intuitively smaller corridors even contained more unique ant species compared to larger corridors. Dung beetle assemblages also showed strong differences between the PA and grassland corridors. While the conservation effectiveness of large corridors undoubtedly exceeds that of smaller corridors, for ants it seems that smaller corridors contribute to their overall conservation within this production landscape. In Chapter 3, I explore the importance of spatial and environmental factors for species distribution across this landscape. Dung beetles were split into functional guilds according to size and nesting behaviour for analyses. Within grassland corridors, tunnelling dung beetle species richness was sensitive to landscape level fragmentation, especially for larger species, while elevation and vegetation type influenced ant species richness. Since rolling dung beetles showed a close association with the PA, the marked difference in dung beetle assemblages between these two land-uses may be due to the presence of pellet producing grazers in the protected area and their replacement by pat producing cattle in the grassland corridors. Other environmental variables that were found to be important for dung beetle species composition were elevation, vegetation type, and soil hardness. For ant species composition, only elevation was found to be important. In conclusion, as large corridors were comparable to the PA in dung beetle and ant species richness, ENs act as extensions of formally PAs, given that they are large enough. Nevertheless, smaller corridors had surprisingly high species richness. Including additional information other than species data improved our knowledge of the underlying factors that drive dung beetle species composition. Even though dung beetle and ant species responded differentially to habitat fragmentation, environmental heterogeneity seemed important for both taxa. Incorporating habitat heterogeneity into the current management scheme may improve the conservation effectiveness within this transformed landscape.


Version intégrale (2,45 Mb)

Page publiée le 17 janvier 2016, mise à jour le 30 mars 2020