Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Espagne → 2014 → Aplicación de distintas metodologías a la monitorización de la humedad del suelo y al cálculo del balance hídrico diario

Universidad Politecnica de Madrid (2014)

Aplicación de distintas metodologías a la monitorización de la humedad del suelo y al cálculo del balance hídrico diario

Botey Fullat, María

Titre : Aplicación de distintas metodologías a la monitorización de la humedad del suelo y al cálculo del balance hídrico diario

Auteur : Botey Fullat, María

Université de soutenance : E.T.S.I. Agrónomos (UPM) Universidad Politecnica de Madrid

Grade : Thesis (Doctoral) 2014

Due to the importance of a better knowledge of soil water at real time and in a more precisely way, this research work has being carried out with the main objective of selecting a daily Soil Water Balance (SWB) to estimate soil water content, and validate it in comparison to “in situ” measurements. Three locations, differing in soil and climate characteristics, were selected in central Spain in order to estimate with certain acuity soil water as plant-Available Water (AW) and to serve as a tool for the climatic studies. The selected places near meteorology stations were : Guadalajara/El Serranillo an alluvium of the Henares watershed ; Colmenar Viejo/Base Famet, in the south raised area of the Guadarrama river basin, over metamorphic rocks ; and Radiosondeo/Madrid (Barajas) in coarse arkosic sandstone. Morphology characterization, physical, chemical and hydrologic soil properties were studied in each area. In Guadalajara the soil is a Typic Xerorthent with a (Ap-AC-C1- C2) genetic horizon sequence, loam-sandy to loam textural class, less than 2% of rock fragments, presence of equivalent CaCO3 through the whole profile, outstanding the vertical and horizontal homogeneity of the properties. In Colmenar the soil is represented by a Dystric Xerorthent with a (A-C-C/R) genetic horizon sequence, the C/R is 20-30 cm deep where rock outcrops are approximately at 30 cm ; a characteristic feature of this profile is its high acidity and high rock fragments content. In Radiosondeo the soil is represented by a Typic Haploxeralf, with the usual alfisol genetic horizon sequence (A-Bt1-Bt2-C/Bt) ; outstanding its horizontal heterogeneity, “the variability of the Bt (clay enriched horizon) depth in short distances”. In a first experimental stage (2007-2008), the daily SWB chosen was that which only uses as input data the information from the meteorology variables and plant-Total Available Water (TAW) for each soil type and depth. Different daily SWB (with exponential or direct plant-Available Water depletion) were applied, using the Penman- Monteith reference evapotranspiration (ETo) recommended by FAO. At the same time as soil water content was estimated from the different daily SWB at the three locations, also soil water content was being monitored by “in situ” gravimetric methodology, adapting it to each soil characteristic, to determine every time soil water content and AW to a depth of 0 to 30 cm. In each sampling date, 5 samples for each depth were taken : 0-10 cm ; 10-20 cm and 20-30 cm and the data were submitted to the corresponding statistical analysis. The TAW was calculated based on field capacity (FC) and permanent wilting point (PWP) data obtained from laboratory by the Richards pressure plate. Results from this first experimental stage show that the daily exponential SWB was the one which better estimated the AW in Guadalajara considering field capacity at -33 kPa, though in Colmenar, field capacity at -10 kPa must be considered instead of -33 kPa for a better estimation. In Radiosondeo due to the fact that the Bt horizon depth varied in different sampling dates, it could not be established if the daily exponential SWB had a good performance. In a second experimental stage (20019-2012) and with the objective of minimizing the problems encountered in Radiosondeo for measuring “in situ” soil water content by the gravimetric method, the installation of different sensors for measuring soil water content were established and used in the same field location : TDR (time domain reflectometry - TRIME T3 from IMKO), capacitance FDR (frecuency domain reflectometry - ECH2O EC-20 from DECAGON) and others. This second experimental stage lasted 4 years in order to compare the soil water measures from the sensors with the estimations by the exponential SWB form 0 to 85 cm soil depths. At laboratory, specific calibrations for TDR and FDR sensors of the Typic Haploxeralf more differentiated horizons were done using different types of regressions. The results showed that soil water data obtained by the TDR equipment, corrected by the specific laboratory calibration, best fitted to “in situ” gravimetric soil water measures. In this way TDR was used for comparing to the daily exponential SWB during the four years of this second experimentation stage. Various estimations for obtaining TAW were tested ; based on laboratory data – and/or on the data obtained of the soil water content field sensors. Results confirmed again, the convenience of using the daily exponential SWB, though in this case, with the TAW obtained from the field sensors graphics. Soil water estimated by exponential SWB on daily basis was compared to weekly and monthly periods, in order to know their reliability. The results obtained for a monthly period gave less AW than the ones obtained in a weekly or daily period. Finally it has been proved that the results obtained from the exponential SWB in a daily bases can be used as a useful tool in order to give complementary information to the SPI (Precipitation Standardized Index) and to help in agricultural drought studies.

Présentation de la thèse

Version intégrale (8 Mb)

Page publiée le 7 décembre 2016