Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 2017 → Diagnosing Mechanisms of Oceanic Influence on Sahel Precipitation Variability

Columbia University (2017)

Diagnosing Mechanisms of Oceanic Influence on Sahel Precipitation Variability

Pomposi, Catherine A

Titre : Diagnosing Mechanisms of Oceanic Influence on Sahel Precipitation Variability

Auteur : Pomposi, Catherine A

Université de soutenance : Columbia University

Grade : Doctor of Philosophy (PhD) 2017

The West African Monsoon (WAM) is a significant component of the global monsoon system and plays a key role in the annual cycle of precipitation in the Sahel region of Africa (10°N to 20°N) during the summer months (July to September). Rainfall in the Sahel varies on timescales ranging from seasons to millennia as a result of changes in the WAM. In the last century, the Sahel experienced a relatively wet period (prior to the 1960s) followed by a period of severe drought (1970s-1980s) with higher-frequency variability superimposed on this low-frequency background signal. Understanding precipitation variability like that which occurred over the 20th Century and its impact on Sahel precipitation is critically important for skillful hydroclimate predictions and disaster preparedness in the region. Previous work has shown that the WAM responds to both internal atmospheric variability and external oceanic forcing. A large fraction of 20th Century Sahel rainfall variability has been linked to nearby and remote oceanic forcing from the Atlantic, Pacific, and Indian Oceans, suggesting that the ocean is the primary driver of variability. However, the mechanisms underlying the influence of sea surface temperature (SST) forcing to land based precipitation and the relative importance of the roles of different basins are not as well understood. To this end, the work completed in this thesis examines the physical mechanisms linking oceanic forcing to recent precipitation variability in the Sahel and identifies them alongside large-scale environmental conditions. A series of moisture budget decomposition studies are performed for the Sahel in order to understand the processes that govern regional hydroclimate variability on decadal and interannual time scales. The results show that the oceanic forcing of atmospheric mass convergence and divergence explains the moisture balance patterns in the region to first order on the timescales considered. On decadal timescales, forcing by the Indian and Atlantic Oceans correlate strongly with precipitation variability. The combination of a warm Indian Ocean and negative gradient across the Atlantic forces anomalous circulation patterns that result in net moisture divergence by the mean and transient flow. Together with negative moisture advection, these processes result in a strong drying of the Sahel during the later part of the 20th Century. Diagnosis of moisture budget and circulation components within the main rainbelt and along the monsoon margins show that changes to the mass convergence are related to the magnitude of precipitation that falls in the region, while the advection of dry air is associated with the maximum latitudinal extent of precipitation. On interannual timescales, results show that warm conditions in the Eastern Tropical Pacific remotely force anomalously dry conditions primarily through affecting the low-troposphere mass divergence field. This behavior is related to increased subsidence over the tropical Atlantic and into the Sahel and an anomalous westward flow of moisture from the continent, both resulting in a coherent drying pattern. The interannual signal is then further explored, particularly in light of the expected link between the El Niño Southern Oscillation and dry conditions in the Sahel, notably unseen during the historic El Niño event of 2015. Motivated by this, recent El Niño years and their precipitation signature in the Sahel along with the associated large-scale environmental conditions are examined. Two different outcomes for Sahel summer season are defined ; an anomalously wet or an anomalously dry season coincident with El Niño conditions. The different precipitation patterns are distinguished by increased moisture supply for the wet years, which can be driven by both regional oceanic conditions that favor increased moisture convergence over the continent as well as weaker El Niño forcing. Finally, a series of new idealized SST-forced experiments that explore the causal link between oceanic forcing and the response of convection in the region on daily time resolution are discussed and preliminary results shown. These experiments aim to understand how convection in the Sahel responds to SST forcing using transient model simulations that track the evolving response of the WAM through time, day-by-day, under different oceanic conditions. Preliminary results show the stark differences in seasonal precipitation that occur when anomalies of opposite sign are applied in parts of the Atlantic and Pacific basin. There is also a suggestion of a difference in the timing of the rainy season when the model is run with different SST configurations

Mots clés  : Atmospheric sciences Monsoons Ocean temperature Precipitation (Meteorology) Rain and rainfall


Version intégrale

Page publiée le 12 avril 2017