Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Brésil → Water exchanges between river and aquifer in two different lithologies of Brazilian Semiarid

Universidade Federal do Ceará (2015)

Water exchanges between river and aquifer in two different lithologies of Brazilian Semiarid

Fontenele, Sávio de Brito

Titre : Water exchanges between river and aquifer in two different lithologies of Brazilian Semiarid

Trocas hídricas entre rio e aquífero em duas litologias distintas do semiárido brasileiro

Auteur : Fontenele, Sávio de Brito

Université de soutenance : Universidade Federal do Ceará

Grade : Doutorado em engenharia agrícola 2015

The interaction between surface water and groundwater is a dynamic process in time and space influenced by factors such as soil moisture, hydrodynamic properties, geomorphology, storage and runoff. The quantification and modeling of the processes related to this dynamic constitute prerequisites for the effective water resources management, given that this interaction affects water availability, especially in semi-arid regions. Before this problem, this study aimed to simulate hydrological processes flow transmission between river and groundwater in basins characterized by distinct lithologies, inserted in the Brazilian semiarid region by generating a semi distributed and flexible hydrological model. Two distinct basins of Ceará semiarid region were monitored and used for application of the model developed. A watershed located in sedimentary structure with large underground water reserves (São Jose watershed in the sedimentary basin of Araripe - South of Ceará) and the other one inserted into the crystalline environment and characterized by water scarcity (Patos-Cariús-Iguatu subbasin - Jaguaribe river stretch in the Central-South region of Ceará). The monitoring of these areas between 2010 and 2014 enabled the generation of data and the choice of 10 events from each watershed monitored to evaluate the dynamic river-aquifer. In the evaluation of the data obtained by the monitoring observed aquifer recharges when large volumes precipitates occur in short periods of time. The high temporal spacing difficult the generation of large flows and the rising water levels of the alluvial aquifer. The proposed model was developed considering the three main processes of river-aquifer interaction : full wave propagation, vertical infiltration and groundwater flow. The simulations of the events showed that conductance of the riverbed and effective porosity are the most sensitive parameters of the model. Variations of these parameters allowed the reduction of flood peaks and consequently increases in the aquifer hydraulic loads. However, the simulations showed an underestimation of the hydraulic loads of the aquifer. For the surface discharges were obtained low efficiency ratios (-16.73 to -3.43) for short-term events and small magnitude. Already for long term events and high magnitude, the Nash and Sutcliffe efficiency coefficient performed between 0 and 1 (0.35 to 0.49), indicating a good behavior of the models used. However, for these events the average absolute error between the measured and the simulated loads remained high. The model needs to be adjusted to better define the dynamics of the river-aquifer interaction. A greater number of simulations in both watersheds, with the available events could indicate better where adjustments must be made. The possibility of application of MIRAS model in different lithological means and different spatial scales of semi-arid regions was not possible due to the inability to simulate the model for MHSJ. Thus, one must understands the failure to formulate an alternative and possibly improve the model. Because the use of this tool is the best option for resolving problems and decision making.


Version intégrale (6,96 Mb)

Page publiée le 2 août 2017