Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Suisse → The impact of oxalogenic plants on soil carbon dynamics : formation of a millennium carbon storage as calcium carbonate (Burkina Faso)

Université de Neuchâtel (2012)

The impact of oxalogenic plants on soil carbon dynamics : formation of a millennium carbon storage as calcium carbonate (Burkina Faso)

Ferro, Katia Imeria 

Titre : The impact of oxalogenic plants on soil carbon dynamics : formation of a millennium carbon storage as calcium carbonate (Burkina Faso)

Auteur : Ferro, Katia Imeria 

Etablissement de soutenance : Université de Neuchâtel,

Grade : Doctorat 2012

Résumé
Au sud du Burkina Faso, des milliers d’années de pédogénèse ont produit des « Plinthic Ferralsols Arenic » (suivant la WRB). Il a toutefois été observé que sous l’influence d’arbres oxalogènes tels que Milicia excelsa, Afzelia africana et Bombax costatum, les sols évoluent vers des « Ferralic Calcisols Arenic » (selon la WRB) en quelques décennies. Il est admis que le moteur de cette accumulation carbonatée est l’oxalotrophie bactérienne, qui crée une pompe à carbone entre l’atmosphère et les sols. Les buts de ce travail sont (1) de dresser un bilan de carbone, (2) de modéliser son accumulation et (3) de calculer un temps de résidence du carbone minéral dans le sol sous les arbres. Les échantillons ont été prélevés dans cinq profils à proximité d’arbres oxalogènes et un dans un sol de référence, hors de leur influence. Les teneurs en carbone organique total, en oxalates et en carbonates ont été ensuite mesurées. Les principaux outils utilisés pour quantifier ces trois formes de carbone ont été respectivement la pyrolyse Rock-Eval, la digestion enzymatique (Trinity-Biotech) et la titration en retour après dissolution acide des carbonates. L’analyse de la matière organique indique que le carbone organique total évolue de manière quantitative et qualitative depuis les feuilles jusqu’aux horizons minéraux. Le stock de carbone organique est intégré dans les bio-molécules dans les horizons de surface (A) et dans les géo-molécules plus stables dans les horizons minéraux (B et C). Cette étude montre que la quantité en oxalates dans les feuilles (considérées comme un premier réservoir d’oxalate) est de 20 x 10-2 mg/g de matière sèche. A cette source peut être ajoutée celle des champignons excréteurs d’acide oxalique. En effet, par la mise en culture d’échantillons de sol, les espèces oxalogènes suivantes ont été identifiées : Aspergillus sp., Fusarium sp. et Mucor sp.. Malgré ces deux apports d’oxalate (feuilles et champignons), la concentration mesurée dans les sols reste faible, ne dépassant pas 6.5 x 10-3 mg d’oxalate/g de sol à un instant t. Ceci-ci peut être expliqué par l’efficacité de l’oxydation bactérienne des oxalates menant à la précipitation de calcite faiblement magnésienne. En effet cette dernière, non présente dans les feuilles fraîches, a été observée dans la litière et les sols où les concentrations peuvent atteindre 15% de la masse totale. Ces résultats ont permis de construire un premier modèle proposant que (1) la teneur en carbonates doublerait chaque 30 ans, (2) entre 70 et 170 ans l’accumulation en carbonates serait telle que le sol pourrait être cimenté, et (3) le temps de résidence du carbone pourrait aisément dépasser 4000 ans

Présentation

Version intégrale

Page publiée le 18 décembre 2017