Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Espagne → 2017 → Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems

Universitat Politècnica de València (2017)

Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems

Lerma Elvira, Néstor

Titre : Assessment and implementation of evolutionary algorithms for optimal management rules design in water resources systems

Auteur : Lerma Elvira, Néstor

Université de soutenance : Universitat Politècnica de València

Grade : Tesis doctoral 2017

Water is an essential resource from an environmental, biological, economic or social point of view. In basin management, the irregular distribution in time and in space of this resource is well known. This issue is worsened by extreme climate conditions, generating drought periods or flood events. For both situations, optimal management is necessary. In one case, different water uses should be supplied efficiently using the available surface and groundwater resources. In another case, the most important goal is to avoid damages in flood areas, including the loss of human lives, but also to optimize the revenue of energy production in hydropower plants, or in other uses. The approach presented in this thesis proposes to obtain optimal management rules in water resource systems. With this aim, evolutionary algorithms were combined with simulation models. The first ones, as optimization tools, are responsible for guiding the process iterations. In each iteration, a new management rule is defined in the simulation model, which is computed to comprehend the situation of the system after applying this new management. For testing the proposed methodology, four evolutionary algorithms were assessed combining them with two simulation models. The methodology was implemented in four real case studies. This thesis is presented as a compendium of five manuscripts : three scientific papers published in journals (which are indexed in the Journal Citation Report), another under review, and the last manuscript from Conference Proceedings. In the first manuscript, the Pikaia optimization algorithm was combined with the network flow SIMGES simulation model for obtaining four different types of optimal management rules in the Júcar River Basin. In addition, the parameters of the Pikaia algorithm were also analyzed to identify the best combination of them to use in the optimization process. In the second scientific paper, the multi-objective NSGA-II algorithm was assessed to obtain a parametric management rule in the Mijares River basin. In this case, the same simulation model was linked with the evolutionary algorithm. In the Conference manuscript, an in-depth analysis of the Tirso-Flumendosa-Campidano (TFM) system using different scenarios and comparing three water simulation models for water resources management was developed. The third published manuscript presented the assessment and comparison of two evolutionary algorithms for obtaining optimal rules in the TFM system using SIMGES model. The algorithms assessed were the SCE-UA and the Scatter Search. In this research paper, the parameters of both algorithms were also analyzed as it was done with the Pikaia algorithm. The management rules in the three first manuscripts were focused to avoid or minimize deficits in urban and agrarian demands and, in some case studies, also to minimize the water pumped. Finally, in the last document, two of the algorithms used in previous manuscripts were assessed, the mono-objective SCE-UA and the multi-objective NSGA-II. For this research, the algorithms were combined with RS MINERVE software to manage flood events in Visp River basin minimizing damages in risk areas and losses in hydropower plants. Results reached in the five manuscripts demonstrate the validity of the approach. In all the case studies and with the different evolutionary algorithms assessed, the obtained management rules achieved a better system management than the base scenario of each case. These results usually mean a decrease of the economic costs in the management of water resources. However, comparing the four algorithms assessed, SCE-UA algorithm proved to be the most efficient due to the different stop/convergence criteria and its formulation. Nevertheless, NSGA-II is the most recommended due to its multi-objective search focus on the enhancement of different objectives with the same importance where the decision makers can make the best decision for the management of the system

Mots Clés : Evolutionary algorithms , simulation model : optimization , multi-objective , water management , SIMGES , RS MINERVE , decision makers

Présentation et version intégrale

Page publiée le 10 février 2018, mise à jour le 12 février 2019