Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → États-Unis → 2017 → Remote sensing of the environmental impacts of utility-scale solar energy plants

University of Nevada, Las Vegas (2017)

Remote sensing of the environmental impacts of utility-scale solar energy plants

Mohammad Masih Edalat

Titre : Remote sensing of the environmental impacts of utility-scale solar energy plants

Auteur : Mohammad Masih Edalat,

Université de soutenance : University of Nevada, Las Vegas

Grade : Doctor of Philosophy (PhD) 2017

Solar energy has many environmental benefits compared with fossil fuels but solar farming can have environmental impacts especially during construction and development. Thus, in order to enhance environmental sustainability, it is imperative to understand the environmental impacts of utility-scale solar energy (USSE) plants. During recent decades, remote sensing techniques and geographic information systems have become standard techniques in environmental applications. In this study, the environmental impacts of USSE plants are investigated by analyzing changes to land surface characteristics using remote sensing. The surface characteristics studied include land cover, land surface temperature, and hydrological response whereas changes are mapped by comparing pre-, syn-, and post- construction conditions. In order to study the effects of USSE facilities on land cover, the changes in the land cover are measured and analyzed inside and around two USSE facilities. The principal component analysis (PCA), minimum noise fraction (MNF), and spectral mixture analysis (SMA) of remote sensing images are used to estimate the subpixel fraction of four land surface endmembers : high-albedo, low-albedo, shadow, and vegetation. The results revealed that USSE plants do not significantly impact land cover outside the plant boundary. However, land-cover radiative characteristics within the plant area are significantly affected after construction. During the construction phase, site preparation practices including shrub removal and land grading increase high-albedo and decrease low-albedo fractions. The thermal effects of USSE facilities are studied by the time series analysis of remote sensing land surface temperature (LST). A statistical trend analysis of LST, with seasonal trends removed is performed with a particular consideration of panel shadowing by analyzing sun angles for different times of year. The results revealed that the LST outside the boundary of the solar plant does not change, whereas it significantly decreases inside the plant at 10 AM after the construction. The decrease in LST mainly occurred in winters due to lower sun’s altitude, which casts longer shadows on the ground. In order to study the hydrological impacts of PV plants, pre- and post-installation hydrological response over single-axis technology is compared. A theoretical reasoning is developed to explain flows under the influence of PV panels. Moreover, a distributed parametric hydrologic model is used to estimate runoff before and after the construction of PV plants. The results revealed that peak flow, peak flow time, and runoff volume alter after panel installation. After panel installation, peak flow decreases and is observed to shift in time, which depends on orientation. Likewise, runoff volume increases irrespective of panel orientation. The increase in the tilt angle of panel results in decrease in the peak flow, peak flow time, and runoff. This study provides an insight into the environmental impacts of USSE development using remote sensing. The research demonstrates that USSE plants are environmentally sustainable due to minimal impact on land cover and surface temperature in their vicinity. In addition, this research explains the role of rainfall shadowing on hydrological behavior at USSE plants.

Mots clés environmental impact assessment ; remote sensing ; Solar energy


Version intégrale (5,3 Mb)

Page publiée le 29 janvier 2018