Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Australie → Temporal Sodium Flux In A Woodlot Soil Irrigated With Secondary Treated Effluent : The Implications For Sustainable Irrigation And Soil Management

University of Newcastle (2007)

Temporal Sodium Flux In A Woodlot Soil Irrigated With Secondary Treated Effluent : The Implications For Sustainable Irrigation And Soil Management

Lucas, Steven Andrew

Titre : Temporal Sodium Flux In A Woodlot Soil Irrigated With Secondary Treated Effluent : The Implications For Sustainable Irrigation And Soil Management

Auteur : Lucas, Steven Andrew

Université de soutenance : University of Newcastle

Grade : Doctor of Philosophy (PhD) 2007

Résumé partiel
This study reports results obtained and the approach taken in investigating the temporal sodium flux in a woodlot soil receiving secondary treated effluent at Branxton, NSW. Previous research has shown woodlot soils receiving secondary treated effluent undergo an increase in exchangeable sodium percentage (ESP) over time. Increased soil ESP influences micro-aggregate/soil pore stability and, particularly when subject to irrigation waters of specific low-electrolyte concentrations, results in decreased soil permeability and a subsequent need to reduce effluent application rates. Therefore, in irrigated woodlot soils it has been necessary to implement strategies to remove excess sodium from the root zone to maintain optimum permeability of the receiving soil, that is, maintaining the cation balance (as soil ESP) to promote optimum soil pore size. To maintain optimum permeability, an understanding is needed of temporal variations in the accumulation/leaching (flux) of sodium within a soil under secondary treated effluent irrigated conditions. The ability to define the sodium flux depends on the frequency of soil sampling and the ability to interpret the net loss/gain in soil sodium in relation to the applied hydraulic load over time. Past research has measured changes in soil ESP on an annual basis, or longer, making it impossible to interpret temporal sodium flux within a given year. The rate of change of soil ESP has ramifications for optimum permeability within an effluent irrigated woodlot. With respect to increasing/decreasing soil ESP, a major response of the clay particles within micro-aggregates is the deformation of conducting soil pores and reduced hydraulic conductivities. In addition, clay dispersion is governed by the soil ESP and electrolyte concentration of the infiltrating waters at the time, where dispersed clay particles may block conducting soil pores and further reduce hydraulic conductivity. Therefore, investigating the temporal sodium flux in conjunction with the temporal variation in electrolyte concentration of infiltrating waters will give greater insight into the response of effluent irrigated soils to sodium-rich waters over time. Three research aims were formed to investigate temporal sodium flux. These include : 1. To investigate trends in the dominant water balance components for a woodlot soil receiving secondary treated effluent (STE) ; 2. To examine temporal and spatial variation in both the water balance components and measured soil properties, particularly the sodium flux ; and 3. To investigate the implications of the sodium flux on the loss of soil structure and drainage over time (dispersion events), particularly in relation to temporal changes in soil ESP and effluent SAR. Monitoring programs for water balance components and soil parameters covered the period January 2002 – October 2003. Every two months, soil samples were taken at designated sites and at different depths (10, 20, 40, 60, and 80 cm). These samples were analysed for exchangeable cations (Ca2+, Mg2+, Na+ and K+), from which the ESP values were derived. Also, this appears to be the first time that soil sampling at this frequency, which enables the temporal sodium flux to be determined, has been carried out. Column leaching experiments were also performed over the study period to illustrate the response of the woodlot soil, in terms of micro-aggregate stability, to hydraulic loads of varying SAR. Column leaching experiments also confirmed the rate of solute movement through the soil profile and the woodlot soil’s ability to bind/exchange sodium under different hydraulic loads and electrolyte concentrations. Soil extraction plate methods were used to determine wilting point and field capacity for these soils. The Sodium Adsorption Ratio (SAR), which is the solutional equivalent to soil ESP, was used to define the electrolyte concentration of the applied effluent and rainfall to the woodlot. The net loss/gain of exchangeable sodium at different depths and times was determined and compared with changes in water balance components and the measured volumetric soil water over time. The soil water surplus/deficit was recorded at a daily time-step and a cumulative approach was used to determine the long-term soil water surplus/deficit. In addition, variations in groundwater levels were monitored to observe if surplus irrigation events were reflected in temporal trends. As a result of determining the temporal variation in soil ESP, effluent and rainfall SAR, daily soil water deficit/surplus (short-term), cumulative soil water deficit/surplus (long-term) and volumetric soil moisture, temporal trends are presented

Mots clés : sodium flux ; effluent irrigation ; soil management


Version intégrale (4 Mb)

Page publiée le 5 février 2018