Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Afrique du Sud → The capacity of the Cape Flats aquifer and its role in water sensitive urban design in Cape Town

University of Cape Town (2017)

The capacity of the Cape Flats aquifer and its role in water sensitive urban design in Cape Town

Mauck, Benjamin Alan

Titre : The capacity of the Cape Flats aquifer and its role in water sensitive urban design in Cape Town

Auteur : Mauck, Benjamin Alan

Université de soutenance : University of Cape Town.

Grade : Doctor of Philosophy (PhD) 2017

Résumé partiel
There is growing concern that South Africa’s urban centres are becoming increasingly vulnerable to water scarcity due to stressed surface water resources, rapid urbanisation, climate change and increasing demand for water. Furthermore, South Africa is a water-stressed country with much of its surface water resources already allocated to meet current demands. Therefore, in order to meet the future urban water supply requirements, countries like South Africa will need to consider alternative forms of water management that focus on moving towards sustainability in urban water management. WSUD is one such approach that aims to prioritise the value of all urban water resources through reuse and conservation strategies, and the diversification of supply sources. This study investigates the capacity of the Cape Flats Aquifer (CFA), assessing the feasibility of implementing Managed Aquifer Recharge (MAR) as a strategy for flood prevention and supplementing urban water supply. The implementation of MAR on the CFA aims to facilitate the transition towards sustainable urban water management through the application Water Sensitive Urban Design (WSUD) principles. The fully-integrated MIKE SHE model was used to simulated the hydrological and hydrogeological processes of the CFA in Cape Town at a regional-scale. Using the results of the regional-scale model, four sites were selected for more detailed scenario modelling at a local-scale. Several MAR scenarios were simulated to evaluate the aquifer’s response to artificial recharge and abstraction under MAR conditions. The first objective was to evaluate the feasibility of summer abstractions as a flood mitigation strategy at two sites on the Cape Flats prone to winter groundwater flooding, viz. Sweet Home and Graveyard Pond informal settlements. The second objective of the study was to assess the storage potential and feasibility of MAR at two sites in the south of the Cape Flats, at Philippi and Mitchells Plain. In addition, the migration of solute pollutants from the injected or infiltrated stormwater was simulated and climate change simulations were also undertaken to account for potential fluctuations in rainfall and temperature under climate change conditions. The results indicated that flood mitigation on the Cape Flats was possible and was likely to be most feasible at the Graveyard Pond site. The flood mitigation scenarios did indicate a potential risk to local groundwater dependent ecosystems, particularly at the Sweet Home site. Yet, it was shown that a reduction in local groundwater levels may have ecological benefits as many of the naturally occurring wetlands on the Cape Flats are seasonal, where distinct saturated and unsaturated conditions are required. Furthermore, MAR was shown to improve the yield of wellfields at Philippi and Mitchells Plain through the artificial recharge of stormwater while also reducing the risk of seawater intrusion. MAR was shown to provide a valuable means of increasing groundwater storage, improving the supply potential of the CFA for water supply while aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats. Furthermore, the case was made that MAR is an important strategy to assist the City of Cape Town in achieving its WSUD objectives. MAR and groundwater considerations, in general, are essential for the successful implementation of WSUD, without which, there is an increased risk of overlooking or degrading urban groundwater resources.


Version intégrale (11,9 Mb)

Page publiée le 14 janvier 2019