Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Projets de développement → Projets de recherche pour le Développement → 2019 → MAINTAINING RESILIENT SAGEBRUSH & RURAL COMMUNITIES

United States Department of Agriculture (USDA) 2019

MAINTAINING RESILIENT SAGEBRUSH & RURAL COMMUNITIES

Sagebrush Semi-arid

United States Department of Agriculture (USDA) National Institute of Food and Agriculture

Titre : MAINTAINING RESILIENT SAGEBRUSH & RURAL COMMUNITIES

Identification : UTA-01452

Pays : Etats Unis

Durée : 16 FEB 2019 // TERM : 30 SEP 2023

Résumé partiel
Sagebrush (Artemisia spp.) systems occur through most of the semi-arid western North America and is s considered one of the most imperiled ecosystems in the world (Knick et al 2003). Characterized by relatively low temperatures and precipitation, which comes primarily in the form of snow during the winter, the rate of ecosystem processes is relatively slow as evidenced by the life histories of the associated flora and fauna (Connelly et al. 2011). However, the rate of change within sagebrush systems has periodically increased beyond natural processes. One example is when Europeans began to pioneer this semi-arid region and subsequently developed agriculture and infrastructure to support settlement.Currently, only half of the historic distribution of sagebrush land cover persists (Schroeder et al. 2004). Along with the conversion of landscapes from natural sagebrush ecosystems to agricultural lands, Euro-American settlement has resulted in an influx of exotic flora and fauna species (U.S. Fish and Wildlife Service 2013). Countless acres within sagebrush ecosystems are compromised by the presence of exotic vegetation that reduces primary productivity and has resulted in a heightened ignition risk for wildfire - a disturbance for which sagebrush systems are generally not well-adapted. Juxtaposed to the threat of exotic vegetation with too frequent fire cycles, fire suppression has led to increases in conifer encroachment into western sagebrush ecosystems (75 FR 13910 2010). When considering both threats together, i.e., exotic vegetation with increased fire cycles and conifer encroachment, it is difficult to determine which conservation actions are best for the future of sagebrush landscapes.In eastern portions of the sagebrush biome, a different set of threats predominate. As commodity prices increase private sagebrush lands are at increased risk to conversion to cultivated croplands. Additionally, energy development is a threat as oil and natural gas resources are abundant throughout much of the area. Infrastructural support for energy extraction (e.g., roads, powerlines, associated traffic), leads to fragmentation and direct loss of sagebrush habitats. Renewable energy, such as wind power, can also result in the disturbance and loss of sagebrush habitats and is an increasing threat primarily in eastern, but also throughout, sagebrush systems (U.S. Fish and Wildlife Service 2013).Much of the remaining sagebrush biome is working agricultural lands, and is commonly used for grazing of domestic livestock. Interestingly, evidence is mounting that the drivers of ecological function in this fragile system are not only beneficial to wildlife resources but have shared values with sustainable agricultural practices.

Performing Institution : UTAH STATE UNIVERSITY LOGAN, UTAH 84322
Investigator : Thacker, ER, . ; Dahlgren, DA,

Financement :

Présentation : USDA (NIFA)

Page publiée le 26 décembre 2019