Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → 2016 → Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina

Universität Potsdam (2016)

Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina

Castino Fabiana

Titre : Climate variability and extreme hydro-meteorological events in the Southern Central Andes, NW Argentina

Klimavariabilität und extreme hydro-meteorologische Ereignisse in den südlichen Zentralanden, NW Argentinien

Auteur : Castino Fabiana

Université de soutenance : Universität Potsdam

Grade : Doctoral Thesis 2016

Résumé partiel
Extreme hydro-meteorological events, such as severe droughts or heavy rainstorms, constitute primary manifestations of climate variability and exert a critical impact on the natural environment and human society. This is particularly true for high-mountain areas, such as the eastern flank of the southern Central Andes of NW Argentina, a region impacted by deep convection processes that form the basis of extreme events, often resulting in floods, a variety of mass movements, and hillslope processes. This region is characterized by pronounced E-W gradients in topography, precipitation, and vegetation cover, spanning low to medium-elevation, humid and densely vegetated areas to high-elevation, arid and sparsely vegetated environments. This strong E-W gradient is mirrored by differences in the efficiency of surface processes, which mobilize and transport large amounts of sediment through the fluvial system, from the steep hillslopes to the intermontane basins and further to the foreland. In a highly sensitive high-mountain environment like this, even small changes in the spatiotemporal distribution, magnitude and rates of extreme events may strongly impact environmental conditions, anthropogenic activity, and the well-being of mountain communities and beyond. However, although the NW Argentine Andes comprise the catchments for the La Plata river that traverses one of the most populated and economically relevant areas of South America, there are only few detailed investigations of climate variability and extreme hydro-meteorological events.
In this thesis, I focus on deciphering the spatiotemporal variability of rainfall and river discharge, with particular emphasis on extreme hydro-meteorological events in the subtropical southern Central Andes of NW Argentina during the past seven decades. I employ various methods to assess and quantify statistically significant trend patterns of rainfall and river discharge, integrating high-quality daily time series from gauging stations (40 rainfall and 8 river discharge stations) with gridded datasets (CPC-uni and TRMM 3B42 V7), for the period between 1940 and 2015. Evidence for a general intensification of the hydrological cycle at intermediate elevations ( 0.5 – 3 km asl) at the eastern flank of the southern Central Andes is found both from rainfall and river-discharge time-series analysis during the period from 1940 to 2015. This intensification is associated with the increase of the annual total amount of rainfall and the mean annual discharge. However, most pronounced trends are found at high percentiles, i.e. extreme hydro-meteorological events, particularly during the wet season from December to February.An important outcome of my studies is the recognition of a rapid increase in the amount of river discharge during the period between 1971 and 1977, most likely linked to the 1976-77 global climate shift, which is associated with the North Pacific Ocean sea surface temperature variability. Interestingly, after this rapid increase, both rainfall and river discharge decreased at low and intermediate elevations along the eastern flank of the Andes. In contrast, during the same time interval, at high elevations, extensive areas on the arid Puna de Atacama plateau have recorded increasing annual rainfall totals. This has been associated with more intense extreme hydro-meteorological events from 1979 to 2014. This part of the study reveals that low-, intermediate, and high-elevation sectors in the Andes of NW Argentina respond differently to changing climate conditions.

Présentation

Version intégrale

Page publiée le 14 mars 2020