Informations et ressources scientifiques
sur le développement des zones arides et semi-arides

Accueil du site → Doctorat → Allemagne → 2018 → In-stream microbial carbon transformation under opposing stresses - drought and sediment transport

Brandenburg University of Technology Cottbus (2018)

In-stream microbial carbon transformation under opposing stresses - drought and sediment transport

Zlatanović, Sanja

Titre : In-stream microbial carbon transformation under opposing stresses - drought and sediment transport

Mikrobielle Kohlenstofftransformation in Fließgewässern unter Einfluss von Trockenheit und Sedimentumlagerung

Auteur : Zlatanović, Sanja

Université de soutenance : Brandenburg University of Technology Cottbus

Grade : Doctoral Thesis 2018

The mineralization of organic matter (OM) is an important ecosystem service that has come under pressure because of increased frequency of droughts and higher sediment loads in running waters. In particular, lowland streams in temperate regions may experience reinforced sediment transport through migratory ripples and changes of naturally sorted sand and gravel in streambeds towards sand-dominated, homogenized streambed structure. The impact on microbial carbon (C)-transformation from these changes was the main focus of my doctoral thesis, in particular the impact of (i) periodic mechanical disturbance associated with ripple migration (ii) streambed structure homogenization, and (iii) drought in streambeds with sorted or homogenized sediment structure. In a set of microcosms, the significance of periodic mechanical disturbances for microbial C-transformation was tested. Thereby, the quantity and quality of the OM in the sandy sediments were varied by the addition of leaves and fish feces to the OM-poor sands. The results revealed that periodic mechanical disturbances resulted in significant decrease in microbial respiration to a low and similar level regardless of OM quality contained in sand. The importance of the streambed structure (sorted vs homogenized) for C-transformation was tested using set of experimental streams. The focus was on the interaction between benthic and hyporheic microbial processes in C-transformation to better understand the consequences of streambed homogenization on microbial function. The results showed that sediment structure determines connectivity between the benthic and hyporheic zones. The lower water exchange in homogenized streambeds and thereby reduced supply of freshly produced bioavailable OM from the benthic to the hyporheic zone, curtailed microbial respiration in the latter affecting the water quality. The influence of a drought and rewetting was tested on C-transformation in streambeds with a sorted or homogenized sediment structure using experimental streams where one half of the streams were strongly shaded and the other half moderately shaded. The results showed that streambeds affected by droughts, either with sorted or homogenized sediment structure have a similar microbial activity at the first place controlled by shading, whereas microbial composition during drought and its recovery after rewetting was additionally affected by sediment structure.

Overall, this doctoral thesis showed that in sediment transport– and drought-impacted streambeds (i) ripple migration results in decreased C-transformation regardless of the available quality of OM, (ii) homogenization of sorted sediment structure leads to a decrease in microbial C-transformation in the hyporheic zone, and (iii) interaction between sediment structure and shading alters microbial community composition especially critical for resistance and resilience of C-transformation during drought and rewetting


Version intégrale (9,6 Mb)

Page publiée le 7 avril 2020